cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A061446 Primitive part of Fibonacci(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Comments

Fib(n) = A000045(n) = Product_{d|n} a(d), Lucas(n) = A000204(n) = Product_{d|2n and 2^m|d iff 2^m|2n} a(d) (e.g., Lucas(4) = 7 = a(8), Lucas(6) = 18 = a(12)*a(4)). - Len Smiley, Nov 11 2001
A 2001 Iranian Mathematical Olympiad question shows such a sequence exists whenever gcd(a(m),a(n)) = a(gcd(m,n)).
The problem of the characterization of the family of all GCD-morphic sequences F, i.e., F such that GCD(F(m),F(n)) = F(GCD(m,n)), was posed by A. K. Kwasniewski (GCD-morphic Problem). Dziemianczuk and Bajguz (2008) showed that any GCD-morphic sequence is coded by a certain natural number-valued sequence. - Maciej Dziemianczuk, Jan 15 2009
This is the LCM-transform of the Fibonacci numbers (cf. Nowicki). - N. J. A. Sloane, Jan 02 2016

Crossrefs

Cf. A000010 (comments on product formulas).

Programs

  • Maple
    N:= 200; # to get a(1) to a(N)
    L[0]:= 1:
    for i from 1 to N do L[i]:=ilcm(L[i-1],combinat:-fibonacci(i)) od:
    seq(L[i]/L[i-1],i=1..N); # Robert Israel, Aug 03 2015
  • Mathematica
    t={1}; Do[f=Fibonacci[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t
    (* Second program: *)
    a[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
    Array[a, 45] (* Jean-François Alcover, Jul 04 2019 *)
  • PARI
    a(n)=my(d=divisors(n)); fibonacci(n)/lcm(apply(fibonacci,d[1..#d-1])) \\ Charles R Greathouse IV, Oct 06 2016

Formula

Let r=(1+sqrt(5))/2. For n>2, the primitive part of F(n)=(r^n-(-1/r)^n)/sqrt(5) is Phi_n(-r^2)/r^phi(n) where Phi_n is n-th cyclotomic polynomial and phi is Euler's totient function A000010.
a(n) = Product_{d|n} Fib(d)^mu(n/d), where mu = A008683 (Bliss, Fulan, Lovett, Sommars, eq. (7)). - Jonathan Sondow, Jun 11 2013
a(n) = lcm(Fib(1),Fib(2),...,Fib(n))/lcm(Fib(1),Fib(2),...,Fib(n-1)). - Thomas Ordowski, Aug 03 2015
a(n) = Product_{k=1..n} Fib(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} Fib(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021

Extensions

More terms from Vladeta Jovovic, Nov 09 2001
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 29 2007
Edited by Charles R Greathouse IV, Oct 28 2009

A061447 Primitive part of Lucas(n).

Original entry on oeis.org

1, 3, 4, 7, 11, 6, 29, 47, 19, 41, 199, 46, 521, 281, 31, 2207, 3571, 321, 9349, 2161, 211, 13201, 64079, 2206, 15251, 90481, 5779, 101521, 1149851, 2521, 3010349, 4870847, 9901, 4250681, 64681, 103681, 54018521, 29134601, 67861, 4868641, 370248451
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    t={1}; Do[f=LucasL[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t

Formula

Primitive part of L(n) is primitive part of F(2n).
a(n) = Product_{ d divides 2*n } Fibonacci(2*n/d)^mu(d). - Vladeta Jovovic, Mar 08 2004

Extensions

More terms from Vladeta Jovovic, Mar 08 2004

A061254 Odd composite numbers n such that primitive part of Fibonacci(n) (see A061446) is prime.

Original entry on oeis.org

9, 15, 21, 33, 35, 39, 45, 51, 63, 65, 75, 93, 105, 111, 119, 121, 123, 135, 145, 185, 195, 201, 207, 209, 225, 231, 235, 245, 285, 287, 299, 301, 321, 335, 363, 399, 423, 453, 473, 693, 707, 771, 1047, 1113, 1215, 1365, 1371, 1387, 1533, 1537
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    A061446[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
    Select[Range[1, 1999, 2], CompositeQ[#] && PrimeQ[A061446[#]]&] (* Jean-François Alcover, Jul 04 2019 *)

Extensions

Definition corrected by T. D. Noe, Dec 14 2006

A061443 Numbers k such that the Lucas Aurifeuillian primitive part B of Lucas(k) is prime.

Original entry on oeis.org

5, 15, 25, 35, 45, 75, 85, 105, 145, 155, 165, 185, 225, 255, 305, 315, 325, 335, 355, 365, 375, 475, 485, 525, 565, 575, 635, 695, 715, 765, 885, 1235, 1325, 1375, 1515, 2255, 2285, 3085, 3185, 3355, 3565, 3745, 3885, 4325, 4995, 5525, 5915, 6195, 6565, 6975, 6995, 7785, 8855
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Extensions

Corrected by T. D. Noe, Dec 17 2006
Edited by Arkadiusz Wesolowski, Dec 29 2012

A061445 Composite numbers n such that primitive part of Lucas(n) (see A061447) is prime.

Original entry on oeis.org

9, 10, 14, 15, 16, 20, 21, 26, 27, 30, 33, 36, 38, 49, 56, 62, 66, 68, 70, 72, 76, 78, 80, 86, 90, 91, 110, 117, 120, 121, 136, 140, 144, 164, 168, 172, 178, 202, 207, 220, 261, 284, 328, 354, 357, 420, 423, 458, 459, 468, 480, 504, 513, 530, 586, 606
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Examples

			16 is a term because A061447(16)=2207 is a prime. - _Sean A. Irvine_, Feb 15 2023
		

Crossrefs

Extensions

Definition corrected by T. D. Noe, Dec 14 2006
Missing a(5)=16 inserted by Sean A. Irvine, Feb 15 2023

A153443 Aurifeuillian primes of the form 2^k+1.

Original entry on oeis.org

3, 5, 11, 13, 17, 43, 241, 257, 331, 683, 2731, 5419, 43691, 61681, 65537, 174763, 2796203, 15790321, 18837001, 22366891, 715827883, 4278255361, 4562284561, 77158673929, 1133836730401, 2932031007403, 4363953127297
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2008

Keywords

Comments

Take an irreducible real factor of x^k+1 and substitute x=2. If the result is a prime then it belongs in this sequence. For example for k=5 the polynomial x^5+1=(x+1)(x^4-x^3+x^2-x+1) and substituting x->2 in (x^4-x^3+x^2-x+1) we get the prime number 11. So 11 is a term. [Clarified by N. J. A. Sloane, Jul 03 2020]

Crossrefs

A250197 Numbers k such that the left Aurifeuillian primitive part of 2^k+1 is prime.

Original entry on oeis.org

10, 14, 18, 22, 26, 30, 42, 54, 58, 66, 70, 86, 94, 98, 106, 110, 126, 130, 138, 146, 158, 174, 186, 210, 222, 226, 258, 302, 334, 434, 462, 478, 482, 522, 566, 602, 638, 706, 734, 750, 770, 782, 914, 1062, 1086, 1114, 1126, 1226, 1266, 1358, 1382, 1434, 1742, 1926
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

All terms are congruent to 2 modulo 4.
Phi_n(x) is the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nL(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, this is Phi_{2n}(2).
Let L(n) = the Aurifeuillian L-part of 2^n+1, L(n) = 2^(n/2) - 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let L*(n) = GCD(L(n), J*(n)).
This sequence lists all n such that L*(n) is prime.

Examples

			14 is in this sequence because the left Aurifeuillian primitive part of 2^14+1 is 113, which is prime.
34 is not in this sequence because the left Aurifeuillian primitive part of 2^34+1 is 130561, which equals 137 * 953 and is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 4] == 2 && PrimeQ[GCD[2^(#/2) - 2^((#+2)/4) + 1, Cyclotomic[2*#, 2]]] &]
  • PARI
    isok(n) = isprime(gcd(2^(n/2) - 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015
Showing 1-7 of 7 results.