A061455 Triangular numbers whose digit reversal is also a triangular number.
0, 1, 3, 6, 10, 55, 66, 120, 153, 171, 190, 300, 351, 595, 630, 666, 820, 3003, 5995, 8778, 15051, 17578, 66066, 87571, 156520, 180300, 185745, 547581, 557040, 617716, 678030, 828828, 1269621, 1461195, 1680861, 1851850, 3544453, 5073705, 5676765, 5911641
Offset: 1
Examples
153 is in the sequence because (1) it is a triangular number and (2) its reversal 351 is also a triangular number.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..162 (terms < 10^18)
Programs
-
Maple
read("transforms"); isA000217 := proc(n) issqr(1+8*n) ;end proc: isA061455 := proc(n) isA000217(n) and isA000217(digrev(n)) ; end proc: for n from 0 to 60000 do T := A000217(n) ; if isA061455(T) then printf("%d,", T) ; end if; end do: # R. J. Mathar, Dec 13 2010
-
Mathematica
TriangularNumberQ[k_] := If[IntegerQ[1/2 (Sqrt[1 + 8 k] - 1)], True, False]; Select[Range[0, 5676765], TriangularNumberQ[#] && TriangularNumberQ[FromDigits[Reverse[IntegerDigits[#]]]] &] (* Ant King, Dec 13 2010 *)
-
PARI
isok(n) = ispolygonal(n, 3) && ispolygonal(fromdigits(Vecrev(digits(n))), 3); \\ Michel Marcus, Apr 14 2019
Formula
Extensions
More terms from Erich Friedman, May 08 2001
Edited by N. J. A. Sloane, Aug 13 2008 at the suggestion of R. J. Mathar