cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061455 Triangular numbers whose digit reversal is also a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 55, 66, 120, 153, 171, 190, 300, 351, 595, 630, 666, 820, 3003, 5995, 8778, 15051, 17578, 66066, 87571, 156520, 180300, 185745, 547581, 557040, 617716, 678030, 828828, 1269621, 1461195, 1680861, 1851850, 3544453, 5073705, 5676765, 5911641
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			153 is in the sequence because (1) it is a triangular number and (2) its reversal 351 is also a triangular number.
		

Crossrefs

Programs

  • Maple
    read("transforms");
    isA000217 := proc(n) issqr(1+8*n) ;end proc:
    isA061455 := proc(n) isA000217(n) and isA000217(digrev(n)) ; end proc:
    for n from 0 to 60000 do T := A000217(n) ; if isA061455(T) then printf("%d,", T) ; end if; end do: # R. J. Mathar, Dec 13 2010
  • Mathematica
    TriangularNumberQ[k_] := If[IntegerQ[1/2 (Sqrt[1 + 8 k] - 1)], True, False]; Select[Range[0, 5676765], TriangularNumberQ[#] && TriangularNumberQ[FromDigits[Reverse[IntegerDigits[#]]]] &] (* Ant King, Dec 13 2010 *)
  • PARI
    isok(n) = ispolygonal(n, 3) && ispolygonal(fromdigits(Vecrev(digits(n))), 3); \\ Michel Marcus, Apr 14 2019

Formula

a(n)=A000217(k) and A004086(a(n))=A000217(j) for some k and j. - R. J. Mathar, Jun 02 2006

Extensions

More terms from Erich Friedman, May 08 2001
Edited by N. J. A. Sloane, Aug 13 2008 at the suggestion of R. J. Mathar