cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061902 Number of digits in n-th term of A061482.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 17, 34, 68, 135, 270, 539, 1078, 2156, 4311, 8621, 17242, 34484, 68967, 137934, 275867, 551733, 1103466, 2206932, 4413864, 8827727
Offset: 1

Views

Author

Asher Auel, May 05 2001

Keywords

Comments

It appears that either a(n+1) = 2 * a(n) or 2 * a(n) - 1, where this alternation takes on the pattern -1, -1, 0, -1, -1, -1, -1, 0, 0, -1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, ...

Crossrefs

Formula

a(n) = A055642(A061482(n)). - Michel Marcus, Mar 13 2023

Extensions

a(23)-a(27) from Sean A. Irvine, Mar 12 2023

A203903 a(n)=f(a(1),a(2),...,a(n-1)), where f=(n-2)-nd elementary symmetric function and a(1)=1, a(2)=1, a(3)=1.

Original entry on oeis.org

1, 1, 1, 3, 10, 103, 10639, 113191411, 12812295557045431, 164154917441086094769014370809371, 26946836920089791747880319422619013022132207748812110372395151551
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2012

Keywords

Comments

The same recurrence applied to initial values
a(1)=1, a(2)=1, a(3)=2 yields A057438.
The same recurrence applied to initial values
a(1)=1, a(2)=2, a(3)=3 yields A061482.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[2] = 1; a[3] = 1;
    t[3] = {a[1], a[2], a[3]};
    a[n_] := SymmetricPolynomial[n - 2, t[n - 1]]
    t[n_] := Append[t[n - 1], {a[n]}]
    Flatten[Table[a[n], {n, 1, 12}]]  (* A203903 *)
Showing 1-2 of 2 results.