cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061538 Product of all divisors of n, divided by product of unitary divisors; or equivalently product of non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 8, 3, 1, 1, 12, 1, 1, 1, 64, 1, 18, 1, 20, 1, 1, 1, 576, 5, 1, 27, 28, 1, 1, 1, 1024, 1, 1, 1, 7776, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 7, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 3600, 1, 1, 63, 32768, 1, 1, 1, 68, 1, 1, 1, 26873856, 1, 1, 75, 76, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, May 15 2001

Keywords

Examples

			For n = 16: only {1,16} are unitary, while {2,4,8} are non-unitary divisors, so a(16) = 64.
When all divisors are unitary, then A048105 is 0 and the corresponding terms here are equal to 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Select[Divisors@ n, ! CoprimeQ[#, n/#] &], {n, 79}] (* Michael De Vlieger, Mar 17 2017 *)
    a[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Array[a, 80] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    { for (n=1, 1000, s=divisors(n); a=1; for (i=2, length(s), d=s[i]; if (gcd(d, n/d)!=1, a*=d)); write("b061538.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009
    
  • PARI
    a(n) = {my(f = factor(n)); n^((numdiv(f) - 2^omega(f))/2);} \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = n^(A048105(n)/2) = n^((A000005(n) - A034444(n))/2).

Extensions

Corrected and edited by Jaroslav Krizek, Mar 05 2009