A061538 Product of all divisors of n, divided by product of unitary divisors; or equivalently product of non-unitary divisors of n.
1, 1, 1, 2, 1, 1, 1, 8, 3, 1, 1, 12, 1, 1, 1, 64, 1, 18, 1, 20, 1, 1, 1, 576, 5, 1, 27, 28, 1, 1, 1, 1024, 1, 1, 1, 7776, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 7, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 3600, 1, 1, 63, 32768, 1, 1, 1, 68, 1, 1, 1, 26873856, 1, 1, 75, 76, 1, 1, 1
Offset: 1
Keywords
Examples
For n = 16: only {1,16} are unitary, while {2,4,8} are non-unitary divisors, so a(16) = 64. When all divisors are unitary, then A048105 is 0 and the corresponding terms here are equal to 1.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Times @@ Select[Divisors@ n, ! CoprimeQ[#, n/#] &], {n, 79}] (* Michael De Vlieger, Mar 17 2017 *) a[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Array[a, 80] (* Amiram Eldar, Jul 22 2024 *)
-
PARI
{ for (n=1, 1000, s=divisors(n); a=1; for (i=2, length(s), d=s[i]; if (gcd(d, n/d)!=1, a*=d)); write("b061538.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009
-
PARI
a(n) = {my(f = factor(n)); n^((numdiv(f) - 2^omega(f))/2);} \\ Amiram Eldar, Jul 22 2024
Extensions
Corrected and edited by Jaroslav Krizek, Mar 05 2009