cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038718 Number of permutations P of {1,2,...,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,...,n-1.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 21, 31, 46, 68, 100, 147, 216, 317, 465, 682, 1000, 1466, 2149, 3150, 4617, 6767, 9918, 14536, 21304, 31223, 45760, 67065, 98289, 144050, 211116, 309406, 453457, 664574, 973981, 1427439, 2092014, 3065996, 4493436, 6585451
Offset: 1

Views

Author

John W. Layman, May 02 2000

Keywords

Comments

This sequence is the number of digits of each term of A061583. - Dmitry Kamenetsky, Jan 17 2009

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-1},{1,1,2,4},50] (* or *) CoefficientList[ Series[(x^2-x+1)/(x^4-x^3+x^2-2x+1),{x,0,50}],x] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,1,-1,2]^(n-1)*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, Apr 07 2016

Formula

From Joseph Myers, Feb 03 2004: (Start)
G.f.: (1 -x +x^2)/(1-2*x+x^2-x^3+x^4).
a(n) = a(n-1) + a(n-3) + 1. (End)
a(n) = Sum_{i=1..n} A058278(i) = A097333(n) - 1. - R. J. Mathar, Oct 16 2010

Extensions

More terms from Joseph Myers, Feb 03 2004

A061584 a(1) = 1, a(n)= number obtained by replacing each digit of a(n-1) with six times its value.

Original entry on oeis.org

1, 6, 36, 1836, 6481836, 3624486481836, 1836122424483624486481836, 64818366121224122424481836122424483624486481836, 362448648183636612612122461212241224244864818366121224122424481836122424483624486481836
Offset: 1

Views

Author

Amarnath Murthy, May 13 2001

Keywords

Comments

a(n) contains all of a(n-1) as its least significant digits.

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[Flatten[IntegerDigits/@(6 IntegerDigits[#])]]&,1,10] (* Harvey P. Dale, Aug 26 2022 *)
  • Python
    def A061584_first(n):
        an = "1"
        a061584 = []
        while n > 1:
            a061584.append(int(an))
            newan = ""
            for i in an:
                newan += str(6*int(i))
            an = newan
            n -= 1
        a061584.append(int(an))
        return a061584 # John Cerkan, May 25 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Asher Auel, May 15 2001

A061585 a(1) = 1, a(n)= number obtained by replacing each digit of a(n-1) with seven times its value.

Original entry on oeis.org

1, 7, 49, 2863, 14564221, 72835422814147, 49145621352814145672872849, 286372835421472135145672872835424914564914562863, 1456422149145621352814728491472135728354249145649145621352814286372835422863728354214564221
Offset: 1

Views

Author

Amarnath Murthy, May 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits[Flatten[IntegerDigits/@(7*IntegerDigits[#])]]&,1,10] (* Harvey P. Dale, Jan 23 2015 *)
  • PARI
    A061585(n=2,a=1,m=7)={while(n--,a=eval(concat(apply(t->Str(t),digits(a)*m))));a} \\ If only the 2nd argument is given, then the operation is applied once to that argument. - M. F. Hasler, Jun 24 2016
    
  • Python
    def A061585_first(n):
        an = "1"
        a061585 = []
        while n > 1:
            a061585.append(int(an))
            newan = ""
            for i in an:
                newan += str(7*int(i))
            an = newan
            n -= 1
        a061585.append(int(an))
        return a061585 # John Cerkan, May 25 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Asher Auel, May 15 2001
Corrected by Harvey P. Dale, Jan 23 2015

A061580 a(1) = 1, a(n)= number obtained by replacing each digit of a(n-1) with four times its value.

Original entry on oeis.org

1, 4, 16, 424, 16816, 42432424, 1681612816816, 42432424483242432424, 168161281681616321281681612816816, 42432424483242432424424128483242432424483242432424
Offset: 1

Views

Author

Amarnath Murthy, May 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[FromDigits@ Flatten@ Map[IntegerDigits, 4*IntegerDigits[#]] &, 1, 9] (* Michael De Vlieger, Feb 25 2023 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Asher Auel, May 15 2001
a(9) corrected by N. J. A. Sloane, Jan 23 2017 at the suggestion of Carolyn Liao.
a(10) corrected by Sean A. Irvine, Feb 25 2023
Showing 1-4 of 4 results.