cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061593 Number of ways to place 2n nonattacking kings on a 4 X 2n chessboard.

Original entry on oeis.org

12, 79, 408, 1847, 7698, 30319, 114606, 419933, 1501674, 5266069, 18174084, 61892669, 208424880, 695179339, 2299608732, 7552444115, 24648046806, 79994460139, 258339007890, 830619734681, 2660070154542, 8488515938929, 27000079296648, 85629004867577
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001

Keywords

Crossrefs

Column k=2 of A350819.

Programs

  • Magma
    [(17*n-109)*3^n+2*Fibonacci(2*n+10): n in [1..30]]; // Vincenzo Librandi, Jul 12 2011
  • Maple
    with(combinat): A061593:=n->(17*n-109)*3^n+2*fibonacci(2*n+10): seq(A061593(n), n=1..30); # Wesley Ivan Hurt, Nov 08 2014
  • Mathematica
    Table[(17 n - 109)*3^n + 2 Fibonacci[2 n + 10], {n, 30}] (* Wesley Ivan Hurt, Nov 08 2014 *)
    CoefficientList[Series[x (12-29x+33x^2-9x^3)/((1-3x+x^2)(1-3x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{9,-28,33,-9},{0,12,79,408,1847},30] (* Harvey P. Dale, Dec 20 2021 *)

Formula

G.f.: x*(12-29*x+33*x^2-9*x^3)/((1-3*x+x^2)*(1-3*x)^2).
a(n) = 9*a(n-1) - 28*a(n-2) + 33*a(n-3) - 9*a(n-4); a(1)=12, a(2)=79, a(3)=408, a(4)=1847.
a(n) = (17*n-109)*3^n + 2*Fibonacci(2*n+10).
a(n) = 17*A027471(n+2) - 126*A000244(n) + A025169(n+4).