cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061656 Numbers k > 1 such that, in base 2, k and k^2 contain the same digits in the same proportion.

Original entry on oeis.org

53, 106, 211, 212, 397, 403, 417, 419, 422, 424, 437, 441, 459, 781, 794, 801, 806, 817, 833, 834, 838, 839, 841, 844, 848, 865, 874, 882, 885, 918, 979, 1481, 1549, 1562, 1565, 1571, 1573, 1585, 1588, 1589, 1602, 1612, 1613, 1634, 1637, 1665, 1666, 1667, 1668
Offset: 1

Views

Author

Erich Friedman, Jun 16 2001

Keywords

Examples

			53 = 110101_2 and 53^2 = 101011111001_2.
		

Crossrefs

Programs

  • Maple
    p:= n-> add(x^i, i=convert(n, base, 2)):
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while p(k)*2<>p(k^2) do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 10 2015
  • Mathematica
    b2pQ[n_]:=Module[{bn=IntegerDigits[n,2],b2n=IntegerDigits[n^2,2], cbn0, cb2n0}, cbn0=Count[bn,0];cb2n0=Count[b2n,0];cbn0>0&&cb2n0>0 && Count[ bn,1]/cbn0==Count[b2n,1]/cb2n0]; Select[Range[1700],b2pQ] (* Harvey P. Dale, Jan 25 2012 *)
  • Python
    from fractions import Fraction
    from itertools import count, islice
    def f(i, j):
        bi, bj = bin(i)[2:], bin(j)[2:]
        pi = [Fraction(bi.count(d), len(bi)) for d in "01"]
        pj = [Fraction(bj.count(d), len(bj)) for d in "01"]
        return pi == pj
    def ok(n): return f(n, n**2)
    print([k for k in range(2, 1700) if ok(k)]) # Michael S. Branicky, Feb 27 2023

Extensions

Offset changed to 1 by Alois P. Heinz, May 10 2015