A061664 a(n) is the smallest number k >= 2 for which k and k^2 contain the same digits in the same proportion in base n.
53, 184, 45, 9726, 3697, 30, 266, 2890, 72576, 121892, 1604132, 22423892, 31215, 61572224, 532740, 49520, 495341325, 7900478246, 19972726643, 1006557500, 1163503182, 8736, 936946009
Offset: 2
Examples
a(9) = 2890 since 2890 = 3861 in base 9 and 2890^2 = 16638831 in base 9.
Programs
-
Python
from fractions import Fraction from sympy.ntheory import digits from itertools import count, islice def f(i, j, base): si, sj = digits(i, base)[1:], digits(j, base)[1:] pi = [Fraction(si.count(d), len(si)) for d in range(base)] pj = [Fraction(sj.count(d), len(sj)) for d in range(base)] return pi == pj def a(n): return next(k for k in count(2) if f(k, k**2, n)) print([a(n) for n in range(2, 12)]) # Michael S. Branicky, Feb 27 2023
Extensions
More terms from Naohiro Nomoto, Oct 06 2001
Title clarified and a(15)-a(24) from Sean A. Irvine, Feb 27 2023