A114258 Numbers k such that k^2 contains exactly 2 copies of each digit of k.
72576, 406512, 415278, 494462, 603297, 725760, 3279015, 4065120, 4152780, 4651328, 4915278, 4927203, 4944620, 4972826, 4974032, 4985523, 4989323, 5002245, 5016125, 6032970, 6214358, 6415002, 6524235, 7257600, 9883667
Offset: 1
Examples
72576 is in the sequence since its square 5267275776 contains four 7's, two 2's, two 5's and two 6's.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..645 from Seiichi Manyama)
Crossrefs
Programs
-
Python
from math import isqrt from itertools import count, islice def A114258_gen(): # generator of terms for l in count(1): a = isqrt(10**((l<<1)-1)) if (a9:=a%9): a -= a9 for b in range(a,10**l,9): for c in (0,2): k = b+c if sorted(str(k)*2)==sorted(str(k**2)): yield k A114258_list = list(islice(A114258_gen(),20)) # Chai Wah Wu, Feb 27 2024
Comments