cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061667 a(n) = Fibonacci(2*n+1) - 2^(n-1).

Original entry on oeis.org

1, 3, 9, 26, 73, 201, 546, 1469, 3925, 10434, 27633, 72977, 192322, 506037, 1329885, 3491810, 9161929, 24026745, 62983842, 165055853, 432445861, 1132806018, 2967020769, 7770353441, 20348233858, 53282736741, 139516753581, 365301078434, 956453590585
Offset: 1

Views

Author

Emeric Deutsch, Jun 16 2001

Keywords

Comments

Number of cells in the bottom row of all directed column-convex polyominoes of area n+1.
Also the binomial transform of A000071 (after removing its 2 leading zeros). - R. J. Mathar, Nov 04 2008
Equals row sums of triangle A147293. - Gary W. Adamson, Nov 05 2008

Crossrefs

Cf. A000045.
Cf. A147293. - Gary W. Adamson, Nov 05 2008

Programs

Formula

G.f.: x*(1-x)^2/((1-2*x)*(1-3*x+x^2)). - corrected by Philip B. Zhang, Nov 28 2014
a(n) = Sum_{k=0..n+1} C(n+1, k)*sum{j=0..floor(k/2), Fibonacci(k-2j)}. - Paul Barry, Apr 17 2005
a(n) = 2*A001906(n+1)-A001906(n)-A000079(n). - R. J. Mathar, Nov 16 2007
From Colin Barker, Jun 05 2017: (Start)
a(n) = 2^(-1-n)*(-5*4^n - (3-sqrt(5))^n*(-5+sqrt(5)) + (3+sqrt(5))^n*(5+sqrt(5))) / 5.
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>3. (End)

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 26 2009