cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061690 Generalized Stirling numbers.

Original entry on oeis.org

0, 0, 6, 72, 650, 5400, 43757, 353192, 2862330, 23352300, 191891117, 1587587760, 13215894133, 110619113423, 930376519256, 7858437064232, 66627124896218, 566791391339532, 4836144006188165, 41375938305568772, 354859541163656045
Offset: 1

Views

Author

N. J. A. Sloane, Jun 18 2001

Keywords

Crossrefs

Third column of A061691.

Programs

  • PARI
    a(n) = {n!^2*polcoef((besseli(0, 2*x + O(x^(2*n+1))) - 1)^3, 2*n)/6} \\ Andrew Howroyd, Mar 04 2021

Formula

a(n) = s(n, k) = Sum_{pi} n!/(k(1)! * 1!^k(1) * k(2)! * 2!^k(2) * ... * k(n)! * n!^k(n)) * (n!/(1!^k(1) * 2!^k(2) * ... * n!^k(n)))^L, where pi runs through all partitions k(1) +2 * k(2)+...+n * k(n) = n such that k = k(1)+k(2)+...+k(n), with k = 3 and L = 1.
Sum_{n>=1} a(n) * x^n / (n!)^2 = (BesselI(0,2*sqrt(x)) - 1)^3 / 6. - Ilya Gutkovskiy, Mar 04 2021

Extensions

Formula and more terms from Vladeta Jovovic, Dec 09 2001