cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061692 Triangle of generalized Stirling numbers.

Original entry on oeis.org

1, 1, 4, 1, 27, 36, 1, 172, 864, 576, 1, 1125, 17500, 36000, 14400, 1, 7591, 351000, 1746000, 1944000, 518400, 1, 52479, 7197169, 80262000, 191394000, 133358400, 25401600, 1, 369580, 151633440, 3691514176, 17188416000, 23866214400, 11379916800, 1625702400
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2001

Keywords

Examples

			1; 1,4; 1,27,36; 1,172,864,576; ...
		

Crossrefs

Diagonals give A001044, A061695, A061693, A061694. Cf. A061691.
Row sums give A061684.

Programs

  • Maple
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(x*b(n-i)/i!^3, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/i!, i=1..n))(b(n)*n!^3):
    seq(T(n), n=1..10);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    R[0, ] = 1; R[n, x_] := R[n, x] = x*Sum[Binomial[n, k]^2*Binomial[n-1, k]*R[k, x], {k, 0, n-1}]; Table[CoefficientList[R[n, x], x] // Rest, {n, 1, 8}] // Flatten (* Jean-François Alcover, Sep 01 2015, after Peter Bala *)

Formula

T(n, k) = 1/k!*Sum multinomial(n, n_1, n_2, ..n_k)^3, where the sum extends over all compositions (n_1, n_2, .., n_k) of n into exactly k nonnegative parts. - Vladeta Jovovic, Apr 23 2003
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*( sum {k = 0..n-1} binomial(n,k)^2*binomial(n-1,k)*R(k,x) ) with R(0,x) = 1. Also R(n,x + y) = sum {k = 0..n} binomial(n,k)^3*R(k,x)*R(n-k,y). - Peter Bala, Sep 17 2013

Extensions

More terms from Vladeta Jovovic, Apr 23 2003