cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A347620 Position of Matula-Goebel number n among Matula-Goebel numbers sorted by number of vertices then numerically as in A061773.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 15, 16, 19, 17, 20, 21, 22, 23, 24, 38, 25, 39, 26, 27, 40, 28, 29, 41, 30, 42, 43, 31, 32, 44, 45, 33, 46, 34, 47, 86, 48, 49, 50, 51, 87, 52, 53, 35, 88, 89, 54, 55, 56, 36, 90, 57, 58, 91, 59, 92, 93, 37, 60
Offset: 1

Views

Author

Kevin Ryde, Sep 09 2021

Keywords

Comments

This sequence is a permutation of the natural numbers, the inverse of A061773.
n = A005517(k) is the Matula-Goebel number of the first tree of k vertices so its position is immediately after all trees of 1..k-1 vertices so a(A005517(k)) = A087803(k-1) + 1.
n = A005518(k) is the last tree of k vertices so its position is a(A005518(k)) = A087803(k).

Examples

			Tree n=25 is the first of 7 vertices (A005517(7)=25), so its position is after the A087803(6)=37 trees of 1..6 vertices so a(25) = 38.
Tree n=27 is the next of 7 vertices (has A061775(27)=7) so it is next after position 38: a(27) = 39.
		

Crossrefs

Cf. A061775 (number of vertices), A005517 (smallest), A005518 (largest), A087803 (number of trees).
Cf. A061773 (inverse).
Cf. A347540.

Programs

  • PARI
    \\ See links.

Formula

a(n) = A087803(k-1) + s where s is the number of terms of A061775(1..n) equal to k, where k = A061775(n) is the number of vertices of n.

A061775 Number of nodes in rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7, 8, 7, 7, 7, 7, 8, 7, 7, 6, 8, 8, 7, 7, 7, 6, 8, 7, 7, 8, 7, 8, 8, 6, 7, 8, 8, 7, 8, 7, 7, 9, 7, 8, 8, 7, 8, 9, 7, 7, 8, 8, 7, 8, 8, 7, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 7, 8, 8, 8, 9, 7, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2001

Keywords

Comments

Let p(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product p(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration).
Each n occurs A000081(n) times.

Examples

			a(4) = 3 because the rooted tree corresponding to the Matula-Goebel number 4 is "V", which has one root-node and two leaf-nodes, three in total.
See also the illustrations in A061773.
		

Crossrefs

One more than A196050.
Sum of entries in row n of irregular table A214573.
Number of entries in row n of irregular tables A182907, A206491, A206495 and A212620.
One less than the number of entries in row n of irregular tables A184187, A193401 and A193403.
Cf. A005517 (the position of the first occurrence of n).
Cf. A005518 (the position of the last occurrence of n).
Cf. A091233 (their difference plus one).
Cf. A214572 (Numbers k such that a(k) = 8).

Programs

  • Haskell
    import Data.List (genericIndex)
    a061775 n = genericIndex a061775_list (n - 1)
    a061775_list = 1 : g 2 where
       g x = y : g (x + 1) where
          y = if t > 0 then a061775 t + 1 else a061775 u + a061775 v - 1
              where t = a049084 x; u = a020639 x; v = x `div` u
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local u, v: u := n-> op(1, factorset(n)): v := n-> n/u(n): if n = 1 then 1 elif isprime(n) then 1+a(pi(n)) else a(u(n))+a(v(n))-1 end if end proc: seq(a(n), n = 1..108); # Emeric Deutsch, Sep 19 2011
  • Mathematica
    a[n_] := Module[{u, v}, u = FactorInteger[#][[1, 1]]&; v = #/u[#]&; If[n == 1, 1, If[PrimeQ[n], 1+a[PrimePi[n]], a[u[n]]+a[v[n]]-1]]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)
  • PARI
    A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])}));
    for(n=1, 10000, write("b061775.txt", n, " ", A061775(n)));
    \\ Antti Karttunen, Aug 16 2014
    
  • Python
    from functools import lru_cache
    from sympy import isprime, factorint, primepi
    @lru_cache(maxsize=None)
    def A061775(n):
        if n == 1: return 1
        if isprime(n): return 1+A061775(primepi(n))
        return 1+sum(e*(A061775(p)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1) = 1; if n = p_t (= the t-th prime), then a(n) = 1+a(t); if n = uv (u,v>=2), then a(n) = a(u)+a(v)-1.
a(n) = A091238(A091204(n)). - Antti Karttunen, Jan 2004
a(n) = A196050(n)+1. - Antti Karttunen, Aug 16 2014

Extensions

More terms from David W. Wilson, Jun 25 2001
Extended by Emeric Deutsch, Sep 19 2011

A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).

Original entry on oeis.org

4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1

Views

Author

Keith Briggs, Nov 02 2005

Keywords

Comments

This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021

Examples

			From _Gus Wiseman_, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
     1: o
     4: (oo)
    14: (o(oo))
    49: ((oo)(oo))
    86: (o(o(oo)))
   301: ((oo)(o(oo)))
   454: (o((oo)(oo)))
   886: (o(o(o(oo))))
  1589: ((oo)((oo)(oo)))
  1849: ((o(oo))(o(oo)))
  3101: ((oo)(o(o(oo))))
  3986: (o((oo)(o(oo))))
  6418: (o(o((oo)(oo))))
  9761: ((o(oo))((oo)(oo)))
(End)
		

Crossrefs

Cf. A245824 (by number of leaves).
These trees are counted by 2*A001190 - 1.
The semi-binary version is A292050 (counted by A001190).
The semi-identity case is A339193 (counted by A063895).
A000081 counts unlabeled rooted trees with n nodes.
A007097 ranks rooted chains.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    nn=20000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]];
    Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
  • PARI
    i(n)=n==2 || is(primepi(n))
    is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    \\ Also see links.

Formula

The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node

Extensions

Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013

A078442 a(p) = a(n) + 1 if p is the n-th prime, prime(n); a(n)=0 if n is not prime.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Dec 31 2002

Keywords

Comments

Fernandez calls this the order of primeness of n.
a(A007097(n))=n, for any n >= 0. - Paul Tek, Nov 12 2013
When a nonoriented rooted tree is encoded as a Matula-Goebel number n, a(n) tells how many edges needs to be climbed up from the root of the tree until the first branching vertex (or the top of the tree, if n is one of the terms of A007097) is encountered. Please see illustrations at A061773. - Antti Karttunen, Jan 27 2014
Zero-based column index of n in the Kimberling-style dispersion table of the primes (see A114537). - Allan C. Wechsler, Jan 09 2024

Examples

			a(1) = 0 since 1 is not prime;
a(2) = a(prime(1)) = a(1) + 1 = 1 + 0 = 1;
a(3) = a(prime(2)) = a(2) + 1 = 1 + 1 = 2;
a(4) = 0 since 4 is not prime;
a(5) = a(prime(3)) = a(3) + 1 = 2 + 1 = 3;
a(6) = 0 since 6 is not prime;
a(7) = a(prime(4)) = a(4) + 1 = 0 + 1 = 1.
		

Crossrefs

A left inverse of A007097.
One less than A049076.
a(A000040(n)) = A049076(n).
Cf. A373338 (mod 2), A018252 (positions of zeros).
Cf. permutations A235489, A250247/A250248, A250249/A250250, A245821/A245822 that all preserve a(n).
Cf. also array A114537 (A138947) and permutations A135141/A227413, A246681.

Programs

  • Haskell
    a078442 n = fst $ until ((== 0) . snd)
                            (\(i, p) -> (i + 1, a049084 p)) (-2, a000040 n)
    -- Reinhard Zumkeller, Jul 14 2013
  • Maple
    A078442 := proc(n)
        if not isprime(n) then
            0 ;
        else
            1+procname(numtheory[pi](n)) ;
        end if;
    end proc: # R. J. Mathar, Jul 07 2012
  • Mathematica
    a[n_] := a[n] = If[!PrimeQ[n], 0, 1+a[PrimePi[n]]]; Array[a, 105] (* Jean-François Alcover, Jan 26 2018 *)
  • PARI
    A078442(n)=for(i=0,n, isprime(n) || return(i); n=primepi(n)) \\ M. F. Hasler, Mar 09 2010
    

Formula

a(n) = A049076(n)-1.
a(n) = if A049084(n) = 0 then 0 else a(A049084(n)) + 1. - Reinhard Zumkeller, Jul 14 2013
For all n, a(n) = A007814(A135141(n)) and a(A227413(n)) = A007814(n). Also a(A235489(n)) = a(n). - Antti Karttunen, Jan 27 2014

A317713 Number of distinct terminal subtrees of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 3, 3, 4, 4, 5, 4, 3, 4, 4, 3, 3, 5, 4, 6, 2, 5, 4, 5, 3, 4, 3, 4, 4, 5, 4, 4, 5, 4, 4, 5, 3, 3, 4, 5, 4, 3, 3, 5, 3, 4, 5, 5, 4, 4, 6, 4, 2, 5, 5, 4, 4, 4, 5, 5, 3, 5, 4, 4, 3, 6, 4, 6, 4, 3, 5, 5, 4, 6, 4, 5, 5, 4, 4, 5, 4, 6, 5, 5, 3, 5, 3, 5, 4, 5, 5, 4, 4, 5, 3, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Examples

			20 is the Matula-Goebel number of the tree (oo((o))), which has 4 distinct terminal subtrees: {(oo((o))), ((o)), (o), o}. So a(20) = 4.
See also illustrations in A061773.
		

Crossrefs

Programs

  • Mathematica
    ids[n_]:=Union@@FixedPointList[Union@@(Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]&/@#)&,{n}];
    Table[Length[ids[n]],{n,100}]
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A324923(n) = { my(lista = List([]), gpf, i); while(n > 1, gpf=A006530(n); i = primepi(gpf); n /= gpf; n *= i; listput(lista,i)); #Set(lista); }; \\ Antti Karttunen, Oct 23 2023
    A317713(n) = (1+A324923(n)); \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = 1+A324923(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A324923 Number of distinct factors in the factorization of n into factors q(i) = prime(i)/i, i > 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 3, 2, 2, 3, 3, 4, 3, 2, 3, 3, 2, 2, 4, 3, 5, 1, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 2, 3, 4, 3, 2, 2, 4, 2, 3, 4, 4, 3, 3, 5, 3, 1, 4, 4, 3, 3, 3, 4, 4, 2, 4, 3, 3, 2, 5, 3, 5, 3, 2, 4, 4, 3, 5, 3, 4, 4, 3, 3, 4, 3, 5, 4, 4, 2, 4, 2, 4, 3, 4, 4, 3, 3, 4, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

Also the number of distinct proper terminal subtrees of the rooted tree with Matula-Goebel number n. See illustrations in A061773.

Examples

			The factorization 22 = q(1)^2 q(2) q(3) q(5) has four distinct factors, so a(22) = 4.
		

Crossrefs

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length[Union[difac[n]]],{n,100}]
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A324923(n) = { my(lista = List([]), gpf, i); while(n > 1, gpf=A006530(n); i = primepi(gpf); n /= gpf; n *= i; listput(lista,i)); #Set(lista); }; \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = A317713(n) - 1.
a(n) = A196050(n) - A366386(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A342507 Number of internal nodes in rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 3, 3, 4, 2, 3, 2, 4, 1, 3, 3, 2, 3, 3, 4, 4, 2, 5, 3, 4, 2, 4, 4, 5, 1, 5, 3, 4, 3, 3, 2, 4, 3, 4, 3, 3, 4, 5, 4, 5, 2, 3, 5, 4, 3, 2, 4, 6, 2, 3, 4, 4, 4, 4, 5, 4, 1, 5, 5, 3, 3, 5, 4, 4, 3, 4, 3, 6, 2, 5, 4, 5, 3, 5, 4, 5, 3, 5, 3, 5, 4, 3, 5, 4, 4, 6, 5, 4, 2, 6, 3, 6, 5
Offset: 1

Views

Author

François Marques, Mar 14 2021

Keywords

Comments

The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product_{T_i} prime(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration.)

Examples

			a(7) = 2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = 1 because the rooted tree with Matula-Goebel number 2^m is the star tree with m edges.
		

Crossrefs

Other statistics are: A061775 (nodes), A109082 (edge-height), A109129 (leaves), A196050 (edges), A358552 (node-height).
An ordered version is A358553.
Positions of first appearances are A358554.
A000081 counts rooted trees, ordered A000108.
A358575 counts rooted trees by nodes and internals.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],[_],{0,Infinity}],{n,100}] (* Gus Wiseman, Nov 28 2022 *)
  • PARI
    A342507(n) = if( n==1, 0, my(f=factor(n)); 1+sum(k=1,matsize(f)[1],A342507(primepi(f[k,1]))*f[k,2]));

Formula

a(1)=0 and a(n) = A061775(n) - A109129(n) for n > 1.

A279861 Number of transitive finitary sets with n brackets. Number of transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 2, 2, 5, 4, 6, 8, 10, 14, 23, 26, 34, 46, 64, 81, 115, 158, 199, 277, 376, 505, 684, 934, 1241, 1711, 2300, 3123, 4236, 5763, 7814, 10647, 14456, 19662
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2016

Keywords

Comments

A finitary set is transitive if every element is also a subset. Transitive sets are also called full sets.

Examples

			Sequence of transitive finitary sets begins:
1  ()
2  (())
4  (()(()))
7  (()(())((())))
8  (()(())(()(())))
11 (()(())((()))(((()))))
   (()(())((()))(()(())))
12 (()(())((()))(()((()))))
13 (()(())((()))((())((()))))
   (()(())(()(()))((()(()))))
14 (()(())((()))(()(())((()))))
   (()(())(()(()))(()(()(()))))
15 (()(())((()))(((())))(()(())))
   (()(())(()(()))((())(()(()))))
16 (()(())((()))(((())))((((())))))
   (()(())((()))(((())))(()((()))))
   (()(())((()))(()(()))(()((()))))
   (()(())((()))(()(()))((()(()))))
   (()(())(()(()))(()(())(()(()))))
17 (()(())((()))(((())))(()(((())))))
   (()(())((()))(((())))((())((()))))
   (()(())((()))(()(()))(()(()(()))))
   (()(())((()))(()(()))((())((()))))
18 (()(())((()))(((())))((())(((())))))
   (()(())((()))(((())))(()(())((()))))
   (()(())((()))(()(()))((())(()(()))))
   (()(())((()))(()(()))(()(())((()))))
   (()(())((()))((()((()))))(()((()))))
   (()(())((()))(()((())))((())((()))))
		

Crossrefs

Programs

  • Mathematica
    transfins[n_]:=transfins[n]=If[n===1,{{}},Select[Union@@FixedPointList[Complement[Union@@Function[fin,Cases[Complement[Subsets[fin],fin],sub_:>With[{nov=Sort[Append[fin,sub]]},nov/;Count[nov,_List,{0,Infinity}]<=n]]]/@#,#]&,Array[transfins,n-1,1,Union]],Count[#,_List,{0,Infinity}]===n&]];
    Table[Length[transfins[n]],{n,20}]

A127301 Matula-Goebel signatures for plane general trees encoded by A014486.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 6, 7, 5, 16, 12, 12, 14, 10, 12, 9, 14, 19, 13, 10, 13, 17, 11, 32, 24, 24, 28, 20, 24, 18, 28, 38, 26, 20, 26, 34, 22, 24, 18, 18, 21, 15, 28, 21, 38, 53, 37, 26, 37, 43, 29, 20, 15, 26, 37, 23, 34, 43, 67, 41, 22, 29, 41, 59, 31, 64, 48, 48, 56, 40, 48, 36
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
A005517 and A005518 give the minimum and maximum value occurring in each such range.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013

Examples

			A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
Likewise, A014486(6) = 50 (= 110010 in binary = A063171(6)) encodes the plane tree:
.o
.|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(A000040(1)) * A000040(1) = 3*2 = 6, thus a(6) is also 6, which shows these two trees are identical if one ignores their orientation.
		

Crossrefs

a(A014138(n)) = A007097(n+1), a(A014137(n)) = A000079(n+1) for all n.
a(|A106191(n)|) = A033844(n-1) for all n >= 1.
For standard instead of binary encoding we have A358506.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists binary encodings of ordered rooted trees.

Programs

  • Mathematica
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n,2]},And@@Table[If[k==Length[dig],SameQ,LessEqual][Count[Take[dig,k],0],Count[Take[dig,k],1]],{k,Length[dig]}]];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[mgnum[bint[n]],{n,Select[Range[0,1000],binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
  • Scheme
    (define (A127301 n) (*A127301 (A014486->parenthesization (A014486 n)))) ;; A014486->parenthesization given in A014486.
    (define (*A127301 s) (if (null? s) 1 (fold-left (lambda (m t) (* m (A000040 (*A127301 t)))) 1 s)))

Formula

A001222(a(n)) = A057515(n) for all n.

A292050 Matula-Goebel numbers of semi-binary rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 39, 41, 43, 46, 47, 49, 51, 55, 58, 59, 62, 65, 69, 73, 77, 79, 82, 83, 85, 86, 87, 91, 93, 94, 97, 101, 109, 115, 118, 119, 121, 123, 127, 129, 137, 139, 141, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2017

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Crossrefs

Programs

  • Mathematica
    nn=200;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    semibinQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]<=2,And@@semibinQ/@m]]];
    Select[Range[nn],semibinQ]
Showing 1-10 of 34 results. Next