cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061777 Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives total population of triangles at n-th generation.

Original entry on oeis.org

1, 4, 10, 22, 40, 70, 112, 178, 268, 406, 592, 874, 1252, 1822, 2584, 3730, 5260, 7558, 10624, 15226, 21364, 30574, 42856, 61282, 85852, 122710, 171856, 245578, 343876, 491326, 687928, 982834, 1376044, 1965862, 2752288, 3931930, 5504788
Offset: 0

Views

Author

N. J. A. Sloane, R. K. Guy, Jun 23 2001

Keywords

Comments

From the definition, assign label value "1" to an origin triangle; at n-th generation add a triangle at each vertex. Each non-overlapping triangle will have the same label value as that of the predecessor triangle to which it is connected; for the overlapping ones, the label value will be the sum of the label values of predecessors. a(n) is the sum of all label values at the n-th generation. The triangle count is A005448. See illustration. For n >= 1, (a(n) - a(n-1))/3 is A027383. - Kival Ngaokrajang, Sep 05 2014

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.

Crossrefs

Partial sums of A061776.

Programs

  • Maple
    seq(`if`(n::even, 21*2^(n/2) - 6*n-20, 30*2^((n-1)/2)-6*n-20),n=0..100); # Robert Israel, Sep 14 2014
  • Mathematica
    Table[If[EvenQ[n],21 2^(n/2)-6n-20,30 2^((n-1)/2)-6(n-1)-26],{n,0,40}] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    a(n)=if(n%2, 30, 21)<<(n\2) - 6*n - 20 \\ Charles R Greathouse IV, Sep 19 2014

Formula

From Colin Barker, May 08 2012: (Start)
a(n) = 21*2^(n/2) - 6*n - 20 if n is even.
a(n) = 30*2^((n-1)/2) - 6*(n - 1) - 26 if n is odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + 2*a(n-4).
G.f.: (1 + 2*x)*(1 + x^2)/((1 - x)^2*(1 - 2*x^2)). (End)
From Robert Israel, Sep 14 2014: (Start)
a(n) = -20 - 6*n + (21 + 15*sqrt(2))*sqrt(2)^(n-2) + (21 - 15*sqrt(2))*(-sqrt(2))^(n-2).
a(n) = 2*a(n-2) + ((3*n-2)/(3*n-5))*(a(n-1)-2*a(n-3)). (End)
E.g.f.: 21*cosh(sqrt(2)*x) + 15*sqrt(2)*sinh(sqrt(2)*x) - 2*exp(x)*(10 + 3*x). - Stefano Spezia, Aug 13 2022

Extensions

Corrected by T. D. Noe, Nov 08 2006