A061797 Smallest k such that k*n has even digits and is a palindrome or becomes a palindrome when 0's are added on the left.
1, 2, 1, 2, 1, 4, 1, 98, 1, 74, 2, 2, 5, 154, 49, 4, 5, 38, 37, 34, 1, 286, 1, 36, 25, 8, 77, 329144, 31, 16, 2, 28, 25, 2, 19, 196, 23, 6, 17, 154, 1, 542, 143, 1602, 1, 148, 18, 6, 88, 14, 4, 824, 77, 8, 164572, 4, 143, 1198, 8, 1154, 1, 1126, 14, 962, 66, 308, 1, 998
Offset: 0
Examples
a(12) = 5 since 5*12 = 60 (i.e., "060") is a palindrome.
Links
- Robert Israel, Table of n, a(n) for n = 0..7000 (n = 0 .. 80 from Reinhard Zumkeller)
- Patrick De Geest, Smallest multipliers to make a number palindromic.
Crossrefs
Programs
-
ARIBAS
stop := 500000; for n := 0 to 75 do k := 1; test := true; while test and k < stop do m := omit_trailzeros(n*k); if test := not all_even(m) or m <> int_reverse(m) then inc(k); end; end; if k < stop then write(k," "); else write(-1," "); end; end;
-
Haskell
a061797 0 = 1 a061797 n = head [k | k <- [1..], let x = k * n, all (`elem` "02468") $ show x, a136522 (a004151 x) == 1] -- Reinhard Zumkeller, Feb 01 2012
-
Maple
epali:= proc(x,d) local L,i; L:= convert(x,base,5); if d::even then 2*add(L[-i]*(10^(i-1)+10^(d-i)),i=1..d/2) else 2*(L[-(d+1)/2]*10^((d-1)/2) + add(L[-i]*(10^(i-1)+10^(d-i)),i=1..(d-1)/2)) fi end proc; Agenda:= {$0..80}: count:= 0: for d from 1 while count < 81 do E[d]:= [seq(epali(i,d),i=5^(ceil(d/2)-1) .. 5^ceil(d/2)-1)]; P:= sort([op(E[d]),seq(op(E[k] *~ 10^(d-k)), k=1..d-1)]); for x in P do Q:= select(t -> x mod t = 0, Agenda); if Q <> {} then count:= count + nops(Q); for q in Q do R[q]:= x/q od; Agenda:= Agenda minus Q; fi; od; od: seq(R[i],i=0..80); # Robert Israel, Apr 18 2025
-
Mathematica
a[n_] := For[k = 1, True, k++, id = IntegerDigits[k*n]; If[AllTrue[id, EvenQ], rid = Reverse[id]; If[id == rid || (id //. {d__, 0} :> {d}) == (rid //. {0, d__} :> {d}), Return[k]]]]; a[0] = 1; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Apr 01 2016 *) skpal[n_]:=Module[{k=1},While[Count[IntegerDigits[k n],?OddQ]>0 || (!PalindromeQ[(k n)/10^IntegerExponent[n k]]),k++];k]; Array[skpal,70,0] (* _Harvey P. Dale, Dec 19 2021 *)
Extensions
More terms from Klaus Brockhaus, Jun 27 2001
Comments