cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061829 Multiples of 5 having only odd digits.

Original entry on oeis.org

5, 15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 315, 335, 355, 375, 395, 515, 535, 555, 575, 595, 715, 735, 755, 775, 795, 915, 935, 955, 975, 995, 1115, 1135, 1155, 1175, 1195, 1315, 1335, 1355, 1375, 1395, 1515, 1535, 1555, 1575, 1595, 1715, 1735, 1755
Offset: 1

Views

Author

Amarnath Murthy, May 29 2001

Keywords

Examples

			135 = 5*27 is a term having all odd digits.
		

Crossrefs

Cf. A014261.

Programs

  • Maple
    L[1]:= [5]:
    for n from 2 to 4 do
      L[n]:= [seq(op(map(`+`,L[n-1],i*10^(n-1))),i=1..9,2)]
    od:
    map(op, [seq(L[i],i=1..4)]); # Robert Israel, Jun 10 2018
  • Mathematica
    Select[5 Range[370],Select[IntegerDigits[#],EvenQ]=={}&]  (* Harvey P. Dale, Feb 07 2011 *)
  • PARI
    is(n)=n%10==5 && #setintersect(Set(digits(n)),[0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017

Formula

From Robert Israel, Jun 10 2018: (Start)
For n > 1, a(n) = 10*A014261(n-1) + 5.
a(5*n) = 25 + 10*a(n).
a(5*n+1) = 45 + 10*a(n).
a(5*n+2) = -35 + 10*a(n+1).
a(5*n+3) = -15 + 10*a(n+1).
a(5*n+4) = 5 + 10*a(n+1).
G.f. g(x) satisfies g(x) = -25 - 40*x + 5*(5+9*x-7*x^2-3*x^3+x^4)/(1-x^5) + 10*(1-x^5)*g(x^5)/(x^3*(1-x)).
(End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001