A061829 Multiples of 5 having only odd digits.
5, 15, 35, 55, 75, 95, 115, 135, 155, 175, 195, 315, 335, 355, 375, 395, 515, 535, 555, 575, 595, 715, 735, 755, 775, 795, 915, 935, 955, 975, 995, 1115, 1135, 1155, 1175, 1195, 1315, 1335, 1355, 1375, 1395, 1515, 1535, 1555, 1575, 1595, 1715, 1735, 1755
Offset: 1
Examples
135 = 5*27 is a term having all odd digits.
Links
Crossrefs
Cf. A014261.
Programs
-
Maple
L[1]:= [5]: for n from 2 to 4 do L[n]:= [seq(op(map(`+`,L[n-1],i*10^(n-1))),i=1..9,2)] od: map(op, [seq(L[i],i=1..4)]); # Robert Israel, Jun 10 2018
-
Mathematica
Select[5 Range[370],Select[IntegerDigits[#],EvenQ]=={}&] (* Harvey P. Dale, Feb 07 2011 *)
-
PARI
is(n)=n%10==5 && #setintersect(Set(digits(n)),[0,2,4,6,8])==0 \\ Charles R Greathouse IV, Feb 15 2017
Formula
From Robert Israel, Jun 10 2018: (Start)
For n > 1, a(n) = 10*A014261(n-1) + 5.
a(5*n) = 25 + 10*a(n).
a(5*n+1) = 45 + 10*a(n).
a(5*n+2) = -35 + 10*a(n+1).
a(5*n+3) = -15 + 10*a(n+1).
a(5*n+4) = 5 + 10*a(n+1).
G.f. g(x) satisfies g(x) = -25 - 40*x + 5*(5+9*x-7*x^2-3*x^3+x^4)/(1-x^5) + 10*(1-x^5)*g(x^5)/(x^3*(1-x)).
(End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001