cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061843 Squares which remain squares if you increment every digit by 1.

Original entry on oeis.org

0, 25, 2025, 13225, 4862025, 60415182025, 207612366025, 153668543313582025, 13876266042653742025, 20761288044852366025, 47285734107144405625, 406066810454367265225, 141704161680410868660551655625
Offset: 1

Views

Author

Erich Friedman, Jun 23 2001

Keywords

Comments

Incrementing each digit means b^2-a^2 = R_n, the n-digit repunit (10^n-1)/9; so solutions must be of the form a = (u-v)/2, b = (u+v)/2, where u * v = R_n. It remains to check that this is in the right range and a has no 9's. - Franklin T. Adams-Watters, May 25 2006

Examples

			13225 = 115^2 and 24336 = 156^2.
		

Crossrefs

Subsequence of A117755.

Programs

  • Mathematica
    Select[Range[0,500000]^2,With[{lst=IntegerDigits[#]+1},Max[lst]<10&&IntegerQ[Sqrt[FromDigits[lst]]]&]] (* The program generates the first 7 terms of the sequence. *)  (* Harvey P. Dale, Jan 26 2025 *)
  • PARI
    hasdigit(n, d, b=10) = local(r); r=0;while(r==0&&n>=1,if(n%b==d,r=1,n\=b));r
    /* Generates all positive n-digit solutions (in reverse order) */
    A061843s(n) = local(f, nf, v, i, ru, lb, ub, x); lb=10^(n-1);ub=10^n-1;ru=ub\9;f=divisors(ru);v=[];nf=matsize(f)[2];for(i=1,nf\2,x=( (f[nf+1-i]-f[i])\2)^2;if(x>=lb&&x<=ub&&!hasdigit(x,9),v=concat(v,[x])));v \\ Franklin T. Adams-Watters, May 25 2006

Extensions

More terms from Franklin T. Adams-Watters, May 25 2006