cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061917 Either a palindrome or becomes a palindrome if trailing 0's are omitted.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353, 363, 373, 383, 393, 400, 404
Offset: 1

Views

Author

N. J. A. Sloane, Jun 27 2001

Keywords

Comments

Numbers that are palindromes when written with a suitable number of leading zeros. - Jeppe Stig Nielsen, Jan 17 2022

Crossrefs

Programs

  • Haskell
    a061917 n = a061917_list !! (n-1)
    a061917_list = filter chi [0..] where
       chi x = zs == reverse zs where
          zs = dropWhile (== '0') $ reverse $ show x
    -- Reinhard Zumkeller, Sep 25 2011
    
  • Mathematica
    PaleQ[n_Integer, base_Integer] := Module[{idn, trim = n/base^IntegerExponent[n, base]}, idn = IntegerDigits[trim, base]; idn == Reverse[idn]]; Select[Range[0, 500], PaleQ[#, 10] &] (* Lei Zhou, Dec 13 2013 *)
    Join[{0},Select[Range[500],PalindromeQ[FromDigits[Drop[IntegerDigits[#],-IntegerExponent[#,10]]]]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 27 2017 *)
  • PARI
    isOK(k)=k==0||fromdigits(Vecrev(digits(k)))==k/10^valuation(k,10) \\ Jeppe Stig Nielsen, Jan 17 2022
    
  • Python
    def ispal(s): return s == s[::-1]
    def ok(n): s = str(n); return ispal(s) or ispal(s.rstrip('0'))
    print([k for k in range(405) if ok(k)]) # Michael S. Branicky, Jan 17 2022

Formula

A136522(A004151(a(n))) = 1. - Reinhard Zumkeller, Sep 25 2011

Extensions

Corrected by Ray Chandler, Jun 08 2009