A061927 a(n) = n*(n+1)*(2*n+1)*(n^2+n+3)/30.
0, 1, 9, 42, 138, 363, 819, 1652, 3060, 5301, 8701, 13662, 20670, 30303, 43239, 60264, 82280, 110313, 145521, 189202, 242802, 307923, 386331, 479964, 590940, 721565, 874341, 1051974, 1257382, 1493703, 1764303, 2072784, 2422992, 2819025
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Maya Mohsin Ahmed, Algebraic Combinatorics of Magic Squares, arXiv:math/0405476 [math.CO], 2004, p. 73.
- Shalosh B. Ekhad and Doron Zeilberger, There are (1/30)(r+1)(r+2)(2r+3)(r^2+3r+5) Ways For the Four Teams of a World Cup Group to Each Have r Goals For and r Goals Against [Thanks to the Soccer Analog of Prop. 4.6.19 of Richard Stanley's (Classic!) EC1], arXiv:1407.1919 [math.CO], 2014.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Yu-hong Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (5), m=3.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973. [Cached copy, with permission] See p. 32.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
Table[n (n + 1) (2 n + 1) (n^2 + n + 3)/30, {n, 0, 33}] (* or *) CoefficientList[Series[x (1 + x)^3/(-1 + x)^6, {x, 0, 33}], x] (* Michael De Vlieger, Sep 15 2017 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,9,42,138,363},40] (* Harvey P. Dale, Apr 18 2018 *)
-
PARI
a(n) = { n*(n + 1)*(2*n + 1)*(n^2 + n + 3)/30 } \\ Harry J. Smith, Jul 29 2009
Formula
G.f.: x*(1+x)^3/(-1+x)^6 = 20/(-1+x)^5 + 1/(-1+x)^2 + 7/(-1+x)^3 + 18/(-1+x)^4 + 8/(-1+x)^6. - R. J. Mathar, Nov 18 2007
Comments