cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A019298 Number of balls in pyramid with base either a regular hexagon or a hexagon with alternate sides differing by 1 (balls in hexagonal pyramid of height n taken from hexagonal close-packing).

Original entry on oeis.org

0, 1, 4, 11, 23, 42, 69, 106, 154, 215, 290, 381, 489, 616, 763, 932, 1124, 1341, 1584, 1855, 2155, 2486, 2849, 3246, 3678, 4147, 4654, 5201, 5789, 6420, 7095, 7816, 8584, 9401, 10268, 11187, 12159, 13186
Offset: 0

Views

Author

Eric E Blom (eblom(AT)REM.re.uokhsc.edu)

Keywords

Comments

Alternately add and subtract successively longer sets of integers: 0; 1 = 0+1; -4 = 1-2-3; 11 = -4+4+5+6; -23 = 11-7-8-9-10; 42 = -23+11+12+13+14+15; -69 = 42-16-17-18-19-20-21; ... then take absolute values. - Walter Carlini, Aug 28 2003
Number of 3 X 3 symmetric matrices with nonnegative integer entries, such that every row (and column) sum equals n-1.
Equals Sum_{0..n} of "three-quarter squares" sequence (A077043). - Philipp M. Buluschek (kitschen(AT)romandie.com), Aug 12 2007
a(n) is the sum of the n-th row in A220075, n > 0. - Reinhard Zumkeller, Dec 03 2012
Sum of all the smallest parts in the partitions of 3n into three parts (see example). - Wesley Ivan Hurt, Jan 23 2014
For n > 0, a(n) is the number of (nonnegative integer) magic labelings of the prism graph Y_3 with magic sum n - 1. - L. Edson Jeffery, Sep 09 2017
Or number of magic labelings of LOOP X C_3 with magic sum n - 1, where LOOP is the 1-vertex, 1-loop-edge graph, as Y_k = I X C_k and LOOP X C_k have the same numbers of magic labelings when k is odd. - David J. Seal, Sep 13 2017
a(n) is the number of triples of integers in [1,n]^3 such that each pair has sum larger than n. - Bob Zwetsloot, Jul 23 2020

Examples

			Add last column for a(n) (n > 0).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    1           4           11          23          42      ..  a(n)
		

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_3(lambda).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.14(a), p. 452.

Crossrefs

Cf. A053493, A077043 (first differences), A002717.
Cf. A061927, A244497, A292281, A244873, A289992 (# of magic labelings of prism graph Y_k = I X C_k, for k = 4,5,6,7,8, up to an offset).
Cf. A006325, A244879, A244880 (# of magic labelings of LOOP X C_k, for k = 4,6,8, up to an offset).

Programs

  • Magma
    [Floor((n^2+1)*(2*n+3)/8): n in [0..80]]; // Vincenzo Librandi, Jul 28 2013
    
  • Maple
    series(x*(x^2+x+1)/(x+1)/(x-1)^4,x,80);
  • Mathematica
    Table[ Ceiling[3*n^2/4], {n, 0, 37}] // Accumulate (* Jean-François Alcover, Dec 20 2012, after Philipp M. Buluschek's comment *)
    CoefficientList[Series[x (x^2 + x + 1) / ((x + 1) (x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 28 2013 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 11, 23}, 38] (* L. Edson Jeffery, Sep 09 2017 *)
  • PARI
    a(n)=(n^2+1)*(2*n+3)\8 \\ Charles R Greathouse IV, Apr 04 2013
    
  • Python
    def A019298(n): return n*(n*(2*n+3)+2)+3>>3 # Chai Wah Wu, Jun 07 2025

Formula

a(n) = floor((n^2+1)(2n+3)/8).
G.f.: x*(x^2+x+1)/((x+1)*(x-1)^4).
a(n) = floor((2n^3 + 3n^2 + 2n)/8); also nearest integer to ((n+1)^4 - n^4)/16.
a(n) = (4n^3 + 6n^2 + 4n+1 - (-1)^n)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Mar 06 2004
a(n) = Sum_{i=1..n} i^2 - floor(i^2/4) = Sum_{i=1..n} i * (2n - 2i + 1 - floor((n - i + 1)/2) ). - Wesley Ivan Hurt, Jan 23 2014
E.g.f.: (1/16)*(-exp(-x) + exp(x)*(1 + 14*x + 18*x^2 + 4*x^3)). - Stefano Spezia, Nov 29 2019
a(2*n) = (1/2)*( n*(n + 1)^3 - (n - 1)*n^3 ); a(2*n-1) = (1/2)*( (n + 1)*n^3 - n*(n - 1)^3 ) (note: replacing the exponent 3 with 2 throughout gives the sequence of generalized pentagonal numbers A001318). - Peter Bala, Aug 11 2021
a(2n-1) = A213772(n). - R. J. Mathar, Mar 02 2025
(n-2)*a(n) -3*a(n-1) -(n+1)*a(n-2) +2*n-1 =0. - R. J. Mathar, Mar 09 2025

Extensions

Error in n=8 term corrected May 15 1997

A014820 a(n) = (1/3)*(n^2 + 2*n + 3)*(n+1)^2.

Original entry on oeis.org

1, 8, 33, 96, 225, 456, 833, 1408, 2241, 3400, 4961, 7008, 9633, 12936, 17025, 22016, 28033, 35208, 43681, 53600, 65121, 78408, 93633, 110976, 130625, 152776, 177633, 205408, 236321, 270600, 308481
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 4 X 4 pandiagonal magic squares with sum 2n. - Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002
Figurate numbers based on the 4-dimensional regular convex polytope called the 16-cell, hexadecachoron, 4-cross polytope or 4-hyperoctahedron with Schlaefli symbol {3,3,4}. a(n)=(n^2*(n^2+2))/3 if the offset were 1. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 18 2009
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 7-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 7, 18, 20, 8, 0, 0, 0, ...], where (1, 7, 18, 20, 8) = row 4 of the Chebyshev triangle A081277. Also = row 4 of the array in A142978. - Gary W. Adamson, Jul 19 2008

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

  • GAP
    List([0..40], n -> (n+1)^2*((n+1)^2 +2)/3); # G. C. Greubel, Feb 10 2019
  • Magma
    [(1/3)*(n^2+2*n+3)*(n+1)^2: n in [0..40]]; // Vincenzo Librandi, May 22 2011
    
  • Maple
    al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n),r=0..d-1); end; [seq(be(4,n),n=0..100)];
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 33, 96, 225}, 31] (* Jean-François Alcover, Jan 17 2018 *)
  • PARI
    a(n)=(n+1)^2*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Apr 17 2012
    
  • R
    a <- c(1, 8, 33, 96,225)
    for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
    a # Yosu Yurramendi, Sep 03 2013
    
  • Sage
    [((n+1)^2+2)*(n+1)^2/3 for n in range(40)] # G. C. Greubel, Feb 10 2019
    

Formula

Or, a(n-1) = n^2*(n^2+2)/3. - Corrected by R. J. Mathar, Jul 18 2009
From Vladeta Jovovic, Apr 03 2002: (Start)
G.f.: (1+x)^3/(1-x)^5.
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
a(n-1) = C(n+3,4) + 3 C(n+2,4) + 3 C(n+1,4) + C(n,4).
Sum_{n>=0} 1/((1/3*(n^2 + 2*n + 3))*(n+1)^2) = (1/4)*Pi^2 - 3*sqrt(2)*Pi*coth(Pi*sqrt(2))*(1/8) + 3/8 = 1.1758589... - Stephen Crowley, Jul 14 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n > 4, a(0)=1, a(1)=8, a(2)=33, a(3)=96, a(4)=225. - Yosu Yurramendi, Sep 03 2013
From Bruce J. Nicholson, Jan 23 2019: (Start)
Sum_{i=0..n} a(i) = A061927(n+1).
a(n) = 4*A002415(n+1) + A000290(n+1) = A039623(n+1) + A002415(n+1). (End)
E.g.f.: (3 + 21*x + 27*x^2 + 10*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Feb 10 2019
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 17/3 - 8*log(2) = 1/(8 + 2/(8 + 6/(8 + ... + n*(n-1)/(8 + ...)))). See A142983. - Peter Bala, Mar 06 2024

Extensions

Formula index corrected by R. J. Mathar, Jul 18 2009

A244497 Number of magic labelings of the prism graph I X C_5 with magic sum n.

Original entry on oeis.org

1, 11, 57, 197, 533, 1223, 2494, 4654, 8105, 13355, 21031, 31891, 46837, 66927, 93388, 127628, 171249, 226059, 294085, 377585, 479061, 601271, 747242, 920282, 1123993, 1362283, 1639379, 1959839, 2328565, 2750815, 3232216, 3778776, 4396897, 5093387, 5875473, 6750813, 7727509, 8814119
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Comments

This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_5 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A292281, A244873, A289992 (analogs for prism graphs I X C_k, k = 3,4,6,7,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Maple
    A244497:=n->(3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192: seq(A244497(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    CoefficientList[Series[(1 + 6 x + 11 x^2 + 6 x^3 + x^4)/((1 - x)^6*(1 + x)), {x, 0, 37}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,11,57,197,533,1223,2494},40] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    Vec((1+6*x+11*x^2+6*x^3+x^4) / ((1-x)^6*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017

Formula

G.f.: (1 + 6*x + 11*x^2 + 6*x^3 + x^4) / ((1 - x)^6*(1 + x)).
From Colin Barker, Jan 13 2017: (Start)
a(n) = (3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n>6.
(End)

A244873 Number of magic labelings of the prism graph I X C_7 with magic sum n.

Original entry on oeis.org

1, 29, 289, 1640, 6604, 21122, 57271, 137155, 298184, 599954, 1132942, 2029229, 3475465, 5728289, 9132418, 14141618, 21342771, 31483251, 45501823, 64563278, 90097018, 123839804, 167882881, 224723693, 297322402, 389163424, 504322196, 647537387, 824288767, 1040880947, 1304533204
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Comments

The graph is the 5th one shown in the link. This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_7 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A244497, A292281, A289992 (analogs for prism graphs I X C_k, k = 3,4,5,6,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Mathematica
    Table[61 n^7/1440 + 427 n^6/960 + 1463 n^5/720 + 2009 n^4/384 + 11809 n^3/1440 + 1253 n^2/160 + 169 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}] (* Bruno Berselli, Jul 08 2014 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,29,289,1640,6604,21122,57271,137155,298184},40] (* Harvey P. Dale, Aug 09 2017 *)

Formula

G.f.: (1+22*x+106*x^2+169*x^3+106*x^4+22*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 61*n^7/1440 + 427*n^6/960 + 1463*n^5/720 + 2009*n^4/384 + 11809*n^3/1440 + 1253*n^2/160 + 169*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

Extensions

Name made more self-contained by David J. Seal, Sep 14 2017

A289992 Number of magic labelings of the prism graph I X C_8 having magic sum n.

Original entry on oeis.org

1, 49, 746, 6122, 34067, 144963, 506772, 1524628, 4074949, 9898229, 22220990, 46695870, 92769495, 175610631, 318756136, 557659432, 944355593, 1553488697, 2489980818, 3898657938, 5976186139, 8985711691, 13274641084, 19296041660, 27634190285
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Formula

a(n) = A244880(n) + 2*Sum_{i=0..n-1} A244880(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>9. (End)
[Proof of the g.f. follows from the convolution formula and insertion of the g.f. A244880(x): Sum_{n>=0} a(n)x^n = Sum_{n>=0} A244880(n)*x^n +2*Sum_{n>=0} Sum_{i=0..n-1} A244880(i)*x^n = A244880(x) +2*Sum_{i>=0} Sum_{n>=i+1} A244880(i)*x^n = A244880(x) +2*Sum_{i>=0} A244880(i)*x^(i+1) Sum_{n>=0} x^n = A244880(x)+2*A244880(x)*x/(1+x) = A244880(x)*(1+2*x/(1-x)). R. J. Mathar, Mar 09 2025]

A292281 Number of magic labelings of the prism graph I X C_6 having magic sum n.

Original entry on oeis.org

1, 20, 167, 867, 3322, 10309, 27410, 64770, 139479, 278674, 523457, 933725, 1594008, 2620411, 4168756, 6444020, 9711165, 14307456, 20656363, 29283143, 40832198, 56086305, 75987814, 101661910, 134442035, 175897566, 227863845, 292474657, 372197252, 469870007, 588742824
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := SeriesCoefficient[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, n}]; Table[f[n] + 2 Sum[f[i], {i, 0, n - 1}], {n, 0, 24}] (* Michael De Vlieger, Sep 15 2017 *)

Formula

a(n) = A244879(n) + 2*Sum_{i=0..n-1} A244879(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
[Proof of the g.f. follows from the g.f. of A244879 with the resummation demonstrated in A289992: g.f. = A244879(x)*(1+2*x/(1-x)). - R. J. Mathar, Mar 09 2025]

A112351 Triangle read by rows, generated from (..., 5, 3, 1).

Original entry on oeis.org

1, 1, 3, 1, 6, 5, 1, 9, 19, 7, 1, 12, 42, 44, 9, 1, 15, 74, 138, 85, 11, 1, 18, 115, 316, 363, 146, 13, 1, 21, 165, 605, 1059, 819, 231, 15, 1, 24, 224, 1032, 2470, 2984, 1652, 344, 17, 1, 27, 292, 1624, 4974, 8378, 7380, 3060
Offset: 0

Views

Author

Gary W. Adamson, Sep 05 2005

Keywords

Comments

A039755 (Analogs of a Stirling number of the second kind triangle) is generated through an analogous set of operations (but using the matrix M = [1 / 1 3 / 1 3 5 /...]). First few rows of the array are 1, 3, 5, 7, 9, 11, ...; 1, 6, 19, 44, 85, ...; 1, 9, 42, 138, 363, ...; 1, 12, 74, 316, 1059, ....
A112351 is jointly generated with A209414 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica and Example sections. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle T(n,k) given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

Examples

			The antidiagonal 1 9 19 7 of the array becomes row 3 of the triangle.
From _Clark Kimberling_, Mar 09 2012: (Start)
When jointly generated with A209414, the format as a triangle has the following first five rows:
  1;
  1,  3;
  1,  6,  5;
  1,  9, 19,   7;
  1, 12, 42,  44,  9;
  1, 15, 74, 138, 85, 11;
The corresponding first five polynomials are
  1,
  1 + 3x,
  1 + 6x + 5x^2,
  1 + 9x + 19x^2 + 7x^3,
  1 + 12x + 42x^2 + 44x^3 + 9x^4. (End)
(1, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  3,   0;
  1,  6,   5,   0;
  1,  9,  19,   7,   0;
  1, 12,  42,  44,   9,   0;
  1, 15,  74, 138,  85,  11,  0;
  1, 18, 115, 316, 363, 146, 13, 0;
- _Philippe Deléham_, Mar 12 2012
		

Crossrefs

Cf. A039755, A005900 (array row 2), A061927 (array row 3), A209414.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209414 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A112351 *)
    (* Clark Kimberling, Mar 09 2012 *)

Formula

Let M = an infinite lower triangular matrix of the form [1 / 3 1 / 5 3 1 / ...] (with the rest of the terms zeros). Perform M^n * [1 0 0 0 ...] forming an array. Antidiagonals of the array become rows of the triangle A112351.
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,1) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-y*x)^2/(1-x-2*y*x-y*x^2+y^2*x^2). (End)

A061926 Square table by antidiagonals where odd rows are partial sums of previous row, even rows are sums of pairs of values in previous row and initial row is 0 and 1 alternating.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 2, 3, 3, 1, 0, 0, 3, 4, 6, 4, 1, 0, 1, 3, 5, 10, 9, 5, 1, 0, 0, 4, 6, 15, 16, 14, 6, 1, 0, 1, 4, 7, 21, 25, 30, 19, 7, 1, 0, 0, 5, 8, 28, 36, 55, 44, 26, 8, 1, 0, 1, 5, 9, 36, 49, 91, 85, 70, 33, 9, 1, 0, 0, 6, 10, 45, 64, 140, 146, 155, 96, 42, 10
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Examples

			From _Sean A. Irvine_, Mar 14 2023: (Start)
Table begins:
  0 1 0  1  0   1   0   1
  0 1 1  2  2   3   3   4
  0 1 2  3  4   5   6   7
  0 1 3  6 10  15  21  28
  0 1 4  9 16  25  36  49
  0 1 5 14 30  55  91 140
  0 1 6 19 44  85 146 231
  0 1 7 26 70 155 301 532
(End)
		

Crossrefs

Formula

T(0, 2*k) = 0, T(0, 2*k+1) = 1, T(n, 0) = 0, T(2*n, k) = T(2*n-1, k-1) + T(2*n-1, k), T(2*n+1, k) = T(2*n+1, k-1) + T(2*n, k). - Sean A. Irvine, Mar 14 2023

A136451 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n matrix: 2 on the main antidiagonal, -1 on the adjacent sub-antidiagonals and 0 otherwise.

Original entry on oeis.org

1, 2, -1, -3, 2, 1, -4, 6, 2, -1, 5, -10, -9, 2, 1, 6, -19, -16, 12, 2, -1, -7, 28, 42, -22, -15, 2, 1, -8, 44, 68, -74, -28, 18, 2, -1, 9, -60, -138, 126, 115, -34, -21, 2, 1, 10, -85, -208, 316, 202, -165, -40, 24, 2, -1, -11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 19 2008

Keywords

Comments

We start from tri-antidiagonal variants of the Cartan A-n group matrix. For n=1 this is {2}, for n=2 this is {{-1,2},{2,-1}}, for n=3 {{0,-1,2},{-1,2,-1},{2,-1,0}}, for n =4 {{0,0,-1,2},{0,-1,2,-1},{-1,2,-1,0},{2,-1,0,0}} etc. The n-th row of the triangle are the expansion coefficients of the characteristic polynomial.
For n=0, the empty product of the empty matrix is assigned the value T(0,0)=1.
Row sums (characteristic polynomials evaluated at x=0) are 1, 1, 0, 3, -11, -16, 29, 21, 0, 55, -199, -288, 521, 377, 0, 987, -3571, -5168, 9349, 6765, 0, ... (see A038150).

Examples

			1;
2, -1;
-3,2, 1;
-4, 6, 2, -1;
5, -10, -9, 2, 1;
6, -19, -16, 12, 2, -1;
-7,28, 42, -22, -15, 2, 1;
-8, 44, 68, -74, -28,18, 2, -1;
9, -60, -138, 126, 115, -34, -21, 2, 1;
10, -85, -208,316, 202, -165, -40, 24, 2, -1;
-11, 110, 363, -506, -605, 296, 224, -46, -27, 2, 1;
		

Crossrefs

Cf. A124018 (variant), A005993 (column k=1), A061927 (bisection column k=2).

Programs

  • Maple
    A136451x := proc(n,x)
        local A,r,c ;
        A := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
                A[r,c] :=0 ;
            if r+c = 1+n then
                A[r,c] := A[r,c]+2 ;
            elif abs(r+c-1-n)= 1 then
                A[r,c] :=  A[r,c]-1 ;
            end if;
        end do:
        end do:
        (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
    end proc;
    A136451 := proc(n,k)
        coeftayl( A136451x(n,x),x=0,k) ;
    end proc:
    seq(seq(A136451(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 04 2011
  • Mathematica
    H[n_] := Table[Table[If[i + j - 1 == n, 2,If[i + j - 1 == n + 1, -1, If[i + j - 1 == n - 1, -1, 0]]], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a']

A191596 Expansion of (1+x)^4/(1-x)^7.

Original entry on oeis.org

1, 11, 62, 242, 743, 1925, 4396, 9108, 17469, 31471, 53834, 88166, 139139, 212681, 316184, 458728, 651321, 907155, 1241878, 1673882, 2224607, 2918861, 3785156, 4856060, 6168565, 7764471, 9690786, 12000142, 14751227, 18009233, 21846320
Offset: 0

Views

Author

Bruno Berselli, Jun 08 2011

Keywords

Comments

The first, second and third differences are in A069038, A001846 and A008412, respectively.
Inverse binomial transform of this sequence: 1, 10, 41, 88, 104, 64, 16, 0, 0 (0 continued).
Also (by Superseeker), the n-th coefficient of the expansion of ((1+x)^4/(1-x)^7)*(1+x)^n is A006976(n-1).

Crossrefs

Cf. A008415, A001848, A069039, A008412, A001846, A069038, A061927 (for type of g.f.).

Programs

  • Magma
    [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • Maxima
    makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
    
  • PARI
    a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011

Formula

G.f.: (1+x)^4/(1-x)^7.
a(n) = (n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90.
a(n) = a(-n-3) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
By Superseeker:
a(n)+a(n+1) = A069039(n+2),
a(n+2)-a(n) = A001847(n+2),
a(n+2)+2*a(n+1)+a(n) = A001848(n+2).
Showing 1-10 of 10 results.