cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A006325 4-dimensional analog of centered polygonal numbers.

Original entry on oeis.org

0, 0, 1, 7, 26, 70, 155, 301, 532, 876, 1365, 2035, 2926, 4082, 5551, 7385, 9640, 12376, 15657, 19551, 24130, 29470, 35651, 42757, 50876, 60100, 70525, 82251, 95382, 110026, 126295, 144305, 164176, 186032, 210001, 236215, 264810, 295926
Offset: 0

Views

Author

Albert Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
For n>0, a(n+1) is the n-th antidiagonal sum of A213751. - Clark Kimberling, Jun 20 2012
This sequence is the case m=n-1, k=n+3 of b(m,k) = m*(m+1)*((k-2)*m-(k-5))/6, which is the m-th k-gonal pyramidal number. - Luciano Ancora, Apr 11 2015
Starting (1, 7, 26, ...), this is the binomial transform of (1, 6, 13, 12, 4, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
Also starting (1, 7, 26, ...), this appears to be the number of magic labelings of the cycle-of-loops graph LOOP X C_4 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. - David J. Seal, Sep 13 2017
The conjecture by David J. Seal is true and easily proved using MacMahon's Omega operators via the "Omega" package for Mathematica authored by Axel Riese (obtaining (up to an offset) the generating function listed in the formula section below). See the second Mathematica program in which the edges of LOOP X C_4 are indexed as in the example below. The Omega package can be downloaded from the link provided in the article by G. E. Andrews et al. - L. Edson Jeffery, Oct 15 2017

Examples

			A representation of the LOOP X C_4 graph, with edges and loops indexed as shown, as used in the second Mathematica program below:
.             3         1
.              O_______O
.              |   2   |
.              |4     0|
.              |_______|
.              O   6   O
.             5         7
		

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A000027, A000217, A019298, A244497, A244879, A244873, A244880, A293310, A293309 (magic labelings of LOOP X C_k, for k = 1..3,5..10).

Programs

  • Magma
    [n*(n-1)*(n^2-n+1)/6: n in [0..40]]; // Vincenzo Librandi, May 22 2011
    
  • Mathematica
    Table[n*(n-1)*(n^2-n+1)/6, {n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
    << Omega.m; n = 4; cond = {}; Do[AppendTo[cond, Sum[a[Mod[2*k - j, 2*n]], {j, 0, 2}] == a[2*n]], {k, 0, n - 1}]; f = OEqSum[Product[x[i]^a[i], {i, 0, 2*n}], cond, u][[1]]; Do[f = OEqR[f, Subscript[u, k]], {k, n}];
    (* Generating function: *)
    f = Factor[f /. {x[2*n] -> x} /. {x[_] -> 1}]
    (* This sequence (with initial zeros dropped): *)
    CoefficientList[Series[f, {x, 0, 35}], x] (* L. Edson Jeffery, Oct 15 2017 *)
  • PARI
    a(n)=n*(n-1)*(n^2-n+1)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = n*(n-1)*(n^2-n+1)/6.
a(n) = ((n^5 - (n-1)^5) - (n^1 - (n-1)^1))/30 = (n^5 - (n-1)^5 - 1)/30. - Xavier Acloque, Jan 25 2003
The partial sums of the octahedral numbers: a(n+1) = Sum_{i=0..n} A005900(i). - Jonathan Vos Post, Mar 14 2006
G.f.: -x^2*(x+1)^2/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013 [Which is just rephrasing the partial sum formula with the Murthy formula in A005900. - R. J. Mathar, Jun 14 2014]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Yosu Yurramendi, Sep 03 2013
From Daniel Poveda Parrilla, Sep 09 2017: (Start)
a(n) = A169938(n-1)/6.
a(n+1) = A288486(n)/24. (End)
Sum_{n>=2} 1/a(n) = 12 - 2 * sqrt(3) * tanh(sqrt(3)*Pi/2). - Amiram Eldar, Jun 28 2020
E.g.f.: exp(x)*x^2*(3 + 4*x + x^2)/6. - Stefano Spezia, Dec 12 2021

A077043 "Three-quarter squares": a(n) = n^2 - A002620(n).

Original entry on oeis.org

0, 1, 3, 7, 12, 19, 27, 37, 48, 61, 75, 91, 108, 127, 147, 169, 192, 217, 243, 271, 300, 331, 363, 397, 432, 469, 507, 547, 588, 631, 675, 721, 768, 817, 867, 919, 972, 1027, 1083, 1141, 1200, 1261, 1323, 1387, 1452, 1519, 1587, 1657, 1728, 1801, 1875, 1951
Offset: 0

Views

Author

Henry Bottomley, Oct 22 2002

Keywords

Comments

Triangular numbers plus quarter squares: (n+1)*(n+2)/2 + floor(n^2/4) (i.e., A000217(n+1) + A002620(n)).
Largest coefficient in the expansion of (1+x+x^2+...+x^(n-1))^3=((1-x^n)/(1-x))^3, i.e., the coefficient of x^floor[3(n-1)/2] and of x^ceiling[3(n-1)/2]; also number of compositions of [3(n+1)/2] into exactly 3 positive integers each no more than n.
A set of n independent statements a,b,c,d..., produces n^2 conditional statements of the form "If a, then b" (including self-implications such as "If a, then a"). If such statements are taken as equivalent to "It is not the case that the first statement is true and the second is false" (material implication), A077043(n) is the minimum number of the conditional statements that can be true. (The maximum number of false conditional statements is A002620(n), the maximum product of two integers whose sum is n.) - Matthew Vandermast, Mar 04 2003
This is also the maximum number of triple intersections between three sets of n lines, where the lines in each set are parallel to each other. E.g., for n=3:
\.\.\.../././
.\.\.\./././.
..\.\.x././..
---+-*-*-+---
----*-*-*----
---+-*-*-+---
.././.x.\.\..
./././.\.\.\.
/././...\.\.\
where '*' = triple intersection, '+' and 'x' = double intersection.
I am pretty sure that the hexagonal configuration of intersections shown above is the optimum and I get the formulas a(n) = (3n^2)/4 for n even and (3n^2+1)/4 for n odd. - Gabriel Nivasch (gnivasch(AT)yahoo.com), Jan 13 2004
For n > 1 the sequence represents the maximum number of points that can be placed in a plane such that the largest distances between any two points does not exceed the shortest of the distances between any two points by more than a factor n-1. - Johannes Koelman (Joc_kay(AT)hotmail.com), Apr 27 2006
This is also the number of distinct noncongruent isosceles triangles with side length up to n. - Patrick Hurst (patrick(AT)imsa.edu), May 14 2008
Also concentric triangular numbers. A033428 and A003215 interleaved. - Omar E. Pol, Sep 28 2011
Number of (w,x,y) with all terms in {0,...,n} and w=x>range{w,x,y}. - Clark Kimberling, Jun 02 2012
Number of pairs (x,y) with x in {0,...,n}, y even in {0,...,2n}, and x<=y. - Clark Kimberling, Jul 02 2012
From Bob Selcoe, Aug 05 2013: (Start)
a(n) is the number of 3-member sets with non-repeating positive integer values (x,y,z) whose sums equal 3(n+1). Example: a(4)=12; thus there are 12 sets where x+y+z = 15: (1,2,12), (1,3,11), (1,4,10), (1,5,9), (1,6,8), (2,3,10), (2,4,9), (2,5,8), (2,6,7), (3,4,8), (3,5,7) and (4,5,6).
From above, the number of sets sharing minimum values (minvals) equals a(1)-a(0), a(2)-a(1), a(3)-a(2),... a(n)-a(n-1) which are the numbers not divisible by 3, in sequence (A001651), range n to 1. So in the above example, there is one set with minval 4, two sets with minval 3, four sets with minval 2 and five sets with minval 1. (End)
Number of partitions of 3n into exactly 3 parts. - Wesley Ivan Hurt, Jan 21 2014
Number of partitions of 3(n-1) into at most 3 parts. - Colin Barker, Mar 31 2015
Number of possible positions after n-1 steps on the lines of a hexagonal grid. - Reg Robson, Mar 08 2014
12*a(n) is a perfect square when n is even and 12*a(n) - 3 is a perfect square when n is odd. - Miquel Cerda, Jun 30 2016
Square of largest Euclidean distance from start point reachable by an n-step walk on a honeycomb lattice. - Hugo Pfoertner, Jun 21 2018

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 27*x^6 + 37*x^7 + 48*x^8 + ...
a(4)=12 since the compositions of floor(3*(4+1)/2) = 7 into exactly 3 positive integers each no more than 4 are 1+2+4, 1+3+3, 1+4+2, 2+1+4, 2+2+3, 2+3+3, 2+4+1, 3+1+3, 3+2+2, 3+3+1, 4+1+2, 4+2+1.
From _Philippe Deléham_, Dec 17 2011: (Start)
a(1) = 1 = 1^3;
a(1) + a(3) = 1 + 7 = 2^3;
a(1) + a(3) + a(5) = 1 + 7 + 19 = 3^3;
a(1) + a(3) + a(5) + a(7) = 1 + 7 + 19 + 37 = 4^3;
a(1) + a(3) + a(5) + a(7) + a(9) = 1 + 7 + 19 + 37 + 61 = 5^3; ... (End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.

Crossrefs

Column 3 of A195040. - Omar E. Pol, Sep 28 2011
Cf. A019298 (partial sums).
Equals one more than A331952 and one less than A084684. - Greg Dresden, Feb 22 2020

Programs

  • Haskell
    a077043 n = a077043_list !! n
    a077043_list = scanl (+) 0 a001651_list
    -- Reinhard Zumkeller, Jan 06 2014
  • Magma
    [Ceiling(n^2*3/4): n in [0..60]]; // Vincenzo Librandi, Jun 29 2011
    
  • Maple
    A077043:=n->ceil(3*n^2/4); seq(A077043(n), n=0..60); # Wesley Ivan Hurt, Jan 21 2014
  • Mathematica
    Table[Ceiling[(3n^2)/4], {n,0,60}] (* or *) LinearRecurrence[{2,0,-2,1}, {0,1,3,7}, 60] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    {a(n) = n^2 - (n^2 \ 4)}; /* Michael Somos, Jun 29 2011 */
    

Formula

a(n) = ceiling(n^2*3/4) = A077042(n, 3); a(-n) = a(n).
Also can be computed from 1 * C(n,0) + 2 * C(n,1) + 2 * C(n,2) - Sum((-2)^(k-3) C(n, k)). - Joshua Zucker, Nov 10 2002
a(n) = A002620(n-1) + A002620(n) + A002620(n+1). - Jon Perry, May 29 2003
From Jon Perry, May 29 2003: (Start)
a(2k) = a(2k-2) + 6k - 3,
a(2k+1) = a(2k-1) + 6k,
a(4n) = 12n^2,
a(4n+1) = a(4n) + 6n + 1,
a(4n+2) = a(4n+1) + 6n + 2,
a(4n+3) = a(4n+2) + 6n + 4,
a(4n+4) = a(4n+3) + 6n + 5.
Differences between alternate terms give 3, 6, 9, 12, ... (End)
a(n+1) - a(n) = A001651(n), partial sums of A001651. - Reinhard Zumkeller, Dec 28 2007
From R. J. Mathar, Nov 10 2008: (Start)
G.f.: x*(1+x+x^2)/((1+x)*(1-x)^3).
a(n) + a(n+1) = A005448(n+1).
The inverse binomial transform yields 0 followed by A141531. (End)
Euler transform of length 3 sequence [3, 1, -1]. - Michael Somos, Jun 29 2011
a(n) = 3*n^2/4 - ((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
Sum_{k=0..n} a(2k+1) = partial sums of A003215 = (n+1)^3 (see example). - Philippe Deléham, Dec 17 2011
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Dec 16 2012
a(0)=0, a(1)=1, a(n) = 3*(n-1) + a(n-2). - Reg Robson, Mar 08 2014
a(2k) = 3k^2 = A033428(k), a(2k+1) = 3k^2 + 3k + 1 = A003215(k). - Jon Perry, Oct 25 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n)/2). - Wesley Ivan Hurt, Mar 12 2015
a(n) = (3*n)^2/12 for n even and a(n) = ((3*n)^2 + 3)/12 for n odd. - Miquel Cerda, Jun 30 2016
a(n) = Sum_{k=1..n} floor((n+k)/2). - Wesley Ivan Hurt, Mar 31 2017
0 = 1 +a(n)*(+a(n+1) -a(n+2)) +a(n+1)*(-3 -a(n+1) +a(n+2)) for all n in Z. - Michael Somos, Apr 02 2017
E.g.f.: (1/8)*exp(-x)*(-1 + exp(2*x)*(1 + 6*x + 6*x^2)). - Stefano Spezia, Nov 29 2019
Sum_{n>=1} 1/a(n) = Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Jan 16 2023

A001496 Number of 4 X 4 matrices with nonnegative integer entries and row and column sums equal to n.

Original entry on oeis.org

1, 24, 282, 2008, 10147, 40176, 132724, 381424, 981541, 2309384, 5045326, 10356424, 20158151, 37478624, 66952936, 115479776, 193077449, 313981688, 498033282, 772409528, 1173759851, 1750812624, 2567527260, 3706873040
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X 4 stochastic matrices of integers.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(4,r).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, pages 233-234.
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.

Crossrefs

See A002721 for a 3-dimensional analog.
Row n=4 of A257493.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 14*x + 87*x^2 + 148*x^3 + 87*x^4 + 14*x^5 + x^6)/(1 - x)^10, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 24 2017 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,24,282,2008,10147,40176,132724,381424,981541,2309384},30] (* Harvey P. Dale, Jul 12 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+14*x+87*x^2+148*x^3+87*x^4+14*x^5+x^6)/(1-x)^10) \\ Altug Alkan, Apr 17 2016

Formula

G.f.: (1+14*x+87*x^2+148*x^3+87*x^4+14*x^5+x^6)/(1-x)^10.
a(n) = binomial(n + 3, 3) + 20*binomial(n + 4, 5) + 152*binomial(n + 5, 7) + 352*binomial(n + 6, 9). [Equivalent to a formula given by Bell].

Extensions

More terms from Vladeta Jovovic, Feb 06 2000

A011863 Nearest integer to (n/2)^4.

Original entry on oeis.org

0, 0, 1, 5, 16, 39, 81, 150, 256, 410, 625, 915, 1296, 1785, 2401, 3164, 4096, 5220, 6561, 8145, 10000, 12155, 14641, 17490, 20736, 24414, 28561, 33215, 38416, 44205, 50625, 57720, 65536, 74120, 83521, 93789, 104976, 117135, 130321, 144590
Offset: 0

Views

Author

Keywords

Comments

First differences are in A019298.
The bisections are A000583 and A219086.
Number of ways to put n-1 copies of 1,2,3 into sets. [Zeilberger?]
s(n) is the number of 4-tuples (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|; see A186707. - Clark Kimberling, May 24 2012

Crossrefs

Programs

  • Magma
    [ (2*n^4-(1-(-1)^n))/32: n in [0..50] ];
    
  • Maple
    seq(round((n/2)^4), n=0..40);
  • Mathematica
    Round[(Range[40]/2)^4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{0,1,5,16,39,81},40] (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n)=round((n/2)^4) \\ Charles R Greathouse IV, Jun 23 2011

Formula

G.f.: x^2*(1 + x + x^2)/((1 - x)^5*(1+x)).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6). - R. J. Mathar, Dec 07 2010
a(n)+a(n+1) = A002817(n). - R. J. Mathar, Dec 19 2008
a(n) = n^4/16 - 1/32 + (-1)^n/32 - R. J. Mathar, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = (2*A000583(n) + (-1)^n - 1)/32. - Bruno Berselli, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
n*(n^2+n+2)*a(n+1) = 4*(n^2+2*n+2)*a(n)+(n+2)*(n^2+3*n+4)*a(n-1). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n) = floor(n^4/8)/2. - Gary Detlefs, Feb 19 2011, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = A212714(n)/2, n >= 0. - Wolfdieter Lang, Oct 03 2016, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
E.g.f.: (1/32)*exp(-x)*(1 + exp(2*x)*(-1 + 2*x + 14*x^2 + 12*x^3 + 2*x^4)). - Stefano Spezia, Dec 29 2019
Sum_{n>=2} 1/a(n) = 6 + Pi^4/90 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Aug 13 2022

Extensions

Missing a(0) added by N. J. A. Sloane, Dec 29 2019. As a result some of the comments and formulas will need to be adjusted.

A244497 Number of magic labelings of the prism graph I X C_5 with magic sum n.

Original entry on oeis.org

1, 11, 57, 197, 533, 1223, 2494, 4654, 8105, 13355, 21031, 31891, 46837, 66927, 93388, 127628, 171249, 226059, 294085, 377585, 479061, 601271, 747242, 920282, 1123993, 1362283, 1639379, 1959839, 2328565, 2750815, 3232216, 3778776, 4396897, 5093387, 5875473, 6750813, 7727509, 8814119
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Comments

This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_5 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A292281, A244873, A289992 (analogs for prism graphs I X C_k, k = 3,4,6,7,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Maple
    A244497:=n->(3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192: seq(A244497(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    CoefficientList[Series[(1 + 6 x + 11 x^2 + 6 x^3 + x^4)/((1 - x)^6*(1 + x)), {x, 0, 37}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,11,57,197,533,1223,2494},40] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    Vec((1+6*x+11*x^2+6*x^3+x^4) / ((1-x)^6*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017

Formula

G.f.: (1 + 6*x + 11*x^2 + 6*x^3 + x^4) / ((1 - x)^6*(1 + x)).
From Colin Barker, Jan 13 2017: (Start)
a(n) = (3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n>6.
(End)

A244873 Number of magic labelings of the prism graph I X C_7 with magic sum n.

Original entry on oeis.org

1, 29, 289, 1640, 6604, 21122, 57271, 137155, 298184, 599954, 1132942, 2029229, 3475465, 5728289, 9132418, 14141618, 21342771, 31483251, 45501823, 64563278, 90097018, 123839804, 167882881, 224723693, 297322402, 389163424, 504322196, 647537387, 824288767, 1040880947, 1304533204
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Comments

The graph is the 5th one shown in the link. This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_7 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A244497, A292281, A289992 (analogs for prism graphs I X C_k, k = 3,4,5,6,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Mathematica
    Table[61 n^7/1440 + 427 n^6/960 + 1463 n^5/720 + 2009 n^4/384 + 11809 n^3/1440 + 1253 n^2/160 + 169 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}] (* Bruno Berselli, Jul 08 2014 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,29,289,1640,6604,21122,57271,137155,298184},40] (* Harvey P. Dale, Aug 09 2017 *)

Formula

G.f.: (1+22*x+106*x^2+169*x^3+106*x^4+22*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 61*n^7/1440 + 427*n^6/960 + 1463*n^5/720 + 2009*n^4/384 + 11809*n^3/1440 + 1253*n^2/160 + 169*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

Extensions

Name made more self-contained by David J. Seal, Sep 14 2017

A188403 T(n,k) = Number of (n*k) X k binary arrays with rows in nonincreasing order, n ones in every column and no more than 2 ones in any row.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 10, 11, 4, 1, 26, 56, 23, 5, 1, 76, 348, 214, 42, 6, 1, 232, 2578, 2698, 641, 69, 7, 1, 764, 22054, 44288, 14751, 1620, 106, 8, 1, 2620, 213798, 902962, 478711, 62781, 3616, 154, 9, 1, 9496, 2313638, 22262244, 20758650, 3710272, 222190, 7340, 215, 10, 1
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Comments

From Andrew Howroyd, Apr 09 2020: (Start)
T(n,k) is the number of k X k symmetric matrices with nonnegative integer entries and all row and column sums n. The number of such matrices up to isomorphism is given in A333737.
T(n,k) is also the number of loopless multigraphs with k labeled nodes of degree n or less. The number of such multigraphs up to isomorphism is given in A333893. (End)

Examples

			Table starts
  1  2   4    10      26        76         232          764          2620
  1  3  11    56     348      2578       22054       213798       2313638
  1  4  23   214    2698     44288      902962     22262244     648446612
  1  5  42   641   14751    478711    20758650   1158207312   80758709676
  1  6  69  1620   62781   3710272   313568636  36218801244 5518184697792
  1  7 106  3616  222190  22393101  3444274966 767013376954 ...
  1  8 154  7340  681460 111200600 29445929253 ...
  1  9 215 13825 1865715 472211360 ...
  1 10 290 24510 4655535 ...
  1 11 381 41336 ...
  ...
All solutions for 4 X 2:
..1..0....1..1....1..1
..1..0....1..1....1..0
..0..1....0..0....0..1
..0..1....0..0....0..0
		

Crossrefs

Columns 1..8 are A000012, A000027(n+1), A019298(n+1), A053493, A053494, A188400, A188401, A188402.
Main diagonal is A333739.

Programs

  • PARI
    T(k,n)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, acc(x^e+q, v), my(i=poldegree(p), t=pollead(p)); self()(r, k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, (k-e)\m), self()(r, if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e+j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, k, src[i, 1], 0, src[i, 2], 0))); vecsum(Mat(M)[,2]);
    }
    {for(n=1, 7, for(k=1, 7, print1(T(n,k),", ")); print)} \\ Andrew Howroyd, Apr 08 2020

A244879 Number of magic labelings of the cycle-of-loops graph LOOP X C_6 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.

Original entry on oeis.org

1, 18, 129, 571, 1884, 5103, 11998, 25362, 49347, 89848, 154935, 255333, 404950, 621453, 926892, 1348372, 1918773, 2677518, 3671389, 4955391, 6593664, 8660443, 11241066, 14433030, 18347095, 23108436, 28857843, 35752969, 43969626, 53703129, 65169688, 78607848
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, 31}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,18,129,571,1884,5103,11998},40] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    Vec((1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^7.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (120 + 438*n + 677*n^2 + 570*n^3 + 275*n^4 + 72*n^5 + 8*n^6) / 120.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
(End)

Extensions

Name corrected by David J. Seal, Sep 13 2017

A219086 a(n) = floor((n + 1/2)^4).

Original entry on oeis.org

0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/4 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/4), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.
-4*a(n) gives the real part of (n+n*i)*((n+1)+n*i)*(n+(n+1)*i)*((n+1)+(n+1)*i). The imaginary part is always zero. - Jon Perry, Feb 05 2014
Numbers k such that 16*k+1 is a fourth power. - Bruno Berselli, May 29 2018
The row sums of "Floyd's Triangle", which is a triangular array of natural numbers beginning with the number 1, produce the sequence A006003. A006003 can be bisected to get the Rhombic Dodecahedron Sequence A005917, whose n-th partial sum is n^4, and A317297, whose n-th partial sum is a(n). Interleave n^4 or A000583 back with {a(n)} to get A011863, whose first differences are A019298. Finally, A011863(n)-A011863(n-2) = A006003(n-1). - Bruce J. Nicholson, Dec 22 2019

Examples

			0^(1/4) = 0.000...; 1^(1/4) = 1.000...
5^(1/4) = 1.495...; 6^(1/4) = 1.565...
39^(1/4) = 2.499...; 40^(1/4) = 2.514...
		

Crossrefs

Programs

Formula

G.f.: (5*x^3 + 14*x^2 + 5*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (2*n^4 + 4*n^3 + 3*n^2 + n)/2. - J. M. Bergot, Apr 05 2014
a(n) = Sum_{i=0..n} i*(4*i^2 + 1) = n*(n + 1)*(2*n^2 + 2*n + 1)/2. - Bruno Berselli, Feb 09 2017
a(n) = lcm((2*n + 1)^2 - 1, (2*n + 1)^2 + 1)/8 for n>=1. - Lechoslaw Ratajczak, Mar 26 2017
a(n) = A000217(n) * A001844(n). - Bruce J. Nicholson, May 14 2017
E.g.f.: (1/2)*exp(x)*x*(10 + 29*x + 16*x^2 + 2*x^3). - Stefano Spezia, Dec 27 2019
a(n) = ((2*n+1)^4 - 1)/16. - Jianing Song, Jan 03 2023
Sum_{n>=1} 1/a(n) = 6 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Jan 08 2023

A061927 a(n) = n*(n+1)*(2*n+1)*(n^2+n+3)/30.

Original entry on oeis.org

0, 1, 9, 42, 138, 363, 819, 1652, 3060, 5301, 8701, 13662, 20670, 30303, 43239, 60264, 82280, 110313, 145521, 189202, 242802, 307923, 386331, 479964, 590940, 721565, 874341, 1051974, 1257382, 1493703, 1764303, 2072784, 2422992, 2819025
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

Also number of magic labelings of the cubical graph of magic sum n-1 [Ahmed]. - R. J. Mathar, Jan 25 2007
If Y_i (i=1,2,3) are 2-blocks of a (n+3)-set X then a(n-4) is the number of 8-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
The cube graph is also the prism graph I X C_4, so this is related to the number of magic labelings of other prism & related graphs. - David J. Seal, Sep 13 2017

Crossrefs

Cf. A006325, A019298, A244497, A244873, A289992, A292281, partial sums of A014820, A006975 (binomial transform shifted left).

Programs

  • Mathematica
    Table[n (n + 1) (2 n + 1) (n^2 + n + 3)/30, {n, 0, 33}] (* or *)
    CoefficientList[Series[x (1 + x)^3/(-1 + x)^6, {x, 0, 33}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,9,42,138,363},40] (* Harvey P. Dale, Apr 18 2018 *)
  • PARI
    a(n) = { n*(n + 1)*(2*n + 1)*(n^2 + n + 3)/30 } \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = a(n-1) + A014820(n) = A061926(9, n).
G.f.: x*(1+x)^3/(-1+x)^6 = 20/(-1+x)^5 + 1/(-1+x)^2 + 7/(-1+x)^3 + 18/(-1+x)^4 + 8/(-1+x)^6. - R. J. Mathar, Nov 18 2007
Showing 1-10 of 37 results. Next