A087465 Rank array R of 3/2 read by antidiagonals; this array is the dispersion of the complement of the sequence given by r(n) = r(n-1) + 1 + floor(3n/2) for n>=1, with r(0) = 1; that is, A077043(n+1).
1, 2, 3, 4, 5, 7, 6, 8, 10, 12, 9, 11, 14, 16, 19, 13, 15, 18, 21, 24, 27, 17, 20, 23, 26, 30, 33, 37, 22, 25, 29, 32, 36, 40, 44, 48, 28, 31, 35, 39, 43, 47, 52, 56, 61, 34, 38, 42, 46, 51, 55, 60, 65, 70, 75, 41, 45, 50, 54, 59, 64, 69, 74, 80, 85, 91, 49, 53, 58, 63, 68, 73
Offset: 0
Examples
Northwest corner of R: 1 2 4 6 9 13 17 22 3 5 8 11 15 20 25 31 7 10 14 18 23 29 35 42 12 16 21 26 32 39 46 54 19 24 30 36 43 51 59 68 27 33 40 47 55 64 73 83 37 44 52 60 69 79 89 100 Let t=3/2; then R(i,j) = rank of (j,i) when all nonnegative integer pairs (a,b) are ranked by the relation << defined as follows: (a,b) << (c,d) if a + b*t < c + d*t, and also (a,b) << (c,d) if a + b*t = c + d*t and b < d. Thus R(2,1) = 10 is the rank of (1,2) in the list (0,0) << (1,0) << (0,1) << (2,0) << (1,1) << (3,0) << (0,2) << (2,1) << (4,0) << (1,2).
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Programs
-
Mathematica
r = 20; r1 = 12;(*r=# rows of T,r1=# rows to show*); c = 20; c1 = 12;(*c=# cols of T,c1=# cols to show*); s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[3 n/2]; u = Table[s[n], {n, 0, 100}] v = Complement[Range[Max[u]], u]; f[n_] := v[[n]]; Table[f[n], {n, 1, 30}] mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; w[i_, j_] := rows[[i, j]]; TableForm[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A087465 array *) Flatten[Table[w[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A087465 sequence *) TableForm[Table[w[i, 1] + w[1, j] + (i - 1)*(j - 1) - 1, {i, 1, 10}, {j, 1, 10}]] (* A087465 array, by formula *)
Formula
R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.
Extensions
Updated by Clark Kimberling, Sep 23 2014
Comments