A087483 Row 0 of the order array of 3/2, i.e., row 0 of the transposable dispersion in A087465.
1, 2, 4, 6, 9, 13, 17, 22, 28, 34, 41, 49, 57, 66, 76, 86, 97, 109, 121, 134, 148, 162, 177, 193, 209, 226, 244, 262, 281, 301, 321, 342, 364, 386, 409, 433, 457, 482, 508, 534, 561, 589, 617, 646, 676, 706, 737, 769, 801, 834, 868, 902, 937, 973, 1009, 1046, 1084
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs. 7 (2004), article 04.1.6.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Maple
A087483 := proc(n) 1+floor((n+1)^2/3) ; end proc: seq(A087483(n),n=0..10) ; # R. J. Mathar, Aug 10 2017
-
Mathematica
LinearRecurrence[{2, -1, 1, -2, 1}, {1, 2, 4, 6, 9}, 100] (* Jean-François Alcover, Mar 29 2020 *)
Formula
a(n) = n + 1 - floor(n/3) + Sum_{i=1..n} floor(2i/3).
a(n) = 1 + floor((n+1)^2/3) = 1 + A000212(n+1).
a(n) = A192735(n+2) / (n+2). - Reinhard Zumkeller, Jul 08 2011
G.f.: -(x^4-x^3+x^2+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 31 2013
Extensions
Edited by Max Alekseyev, Dec 05 2013
Comments