cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A323884 Sum of A322026 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 12, 0, 8, 9, 4, 0, 8, 0, 4, 6, 8, 0, 4, 0, 4, 6, 4, 0, 0, 1, 4, 15, 4, 0, -2, 0, 12, 6, 4, 2, 13, 0, 4, 6, 4, 0, -2, 0, 4, 5, 4, 0, 22, 1, 2, 6, 4, 0, 7, 2, 4, 6, 4, 0, 8, 0, 4, 5, 20, 2, -2, 0, 4, 6, 0, 0, 38, 0, 4, 3, 4, 2, -2, 0, 10, 13, 4, 0, 8, 2, 4, 6, 4, 0, 16, 2, 4, 6, 4, 2, 28, 0, 2, 5, 4, 0, -2, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA323883(n) = v323883[n];
    A323884(n) = (A322026(n)+A323883(n));

Formula

a(n) = A322026(n) + A323883(n).

A323883 Dirichlet inverse of A322026.

Original entry on oeis.org

1, -2, -3, 0, -1, 7, -1, 2, 2, 2, -1, 0, -1, 2, 3, -1, -1, -6, -1, 0, 3, 2, -1, -11, 0, 2, 3, 0, -1, -7, -1, -1, 3, 2, 1, -1, -1, 2, 3, -2, -1, -7, -1, 0, -2, 2, -1, 7, 0, 0, 3, 0, -1, -9, 1, -2, 3, 2, -1, 0, -1, 2, -2, 3, 1, -7, -1, 0, 3, -2, -1, 20, -1, 2, 0, 0, 1, -7, -1, 1, -6, 2, -1, 0, 1, 2, 3, -2, -1, 6, 1, 0, 3, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA323883(n) = v323883[n];

A065331 Largest 3-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 1, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) < n^0.715. - Charles R Greathouse IV, May 21 2014

Crossrefs

Related to A053165 via A225546.
Cf. A126760 (ordinal transform of this sequence, from its term a(1) = 1 onward).

Programs

  • Haskell
    a065331 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 3 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Magma
    [Gcd(n,6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065331 := proc(n) n/A065330(n) ; end: # R. J. Mathar, Jun 24 2009
    seq(2^padic:-ordp(n,2)*3^padic:-ordp(n,3), n=1..100); # Robert Israel, Feb 08 2016
  • Mathematica
    Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
    a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • PARI
    a(n)=gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=gcd(6^logint(n,2),n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
    

Formula

a(n) = n / A065330(n).
a(n) = A006519(n) * A038500(n).
a(n) = (2^A007814 (n)) * (3^A007949(n)).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
a(A225546(n)) = A225546(A053165(n)). - Peter Munn, Jan 17 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
a(n) = A003586(A322026(n)), A322026(n) = A071521(a(n)). - Antti Karttunen, Sep 08 2024

A126760 a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 9, 5, 1, 3, 10, 2, 11, 1, 4, 6, 12, 1, 13, 7, 5, 2, 14, 3, 15, 4, 2, 8, 16, 1, 17, 9, 6, 5, 18, 1, 19, 3, 7, 10, 20, 2, 21, 11, 3, 1, 22, 4, 23, 6, 8, 12, 24, 1, 25, 13, 9, 7, 26, 5, 27, 2, 1, 14, 28, 3, 29, 15, 10, 4, 30, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 19 2007

Keywords

Comments

For further information see A126759, which provided the original motivation for this sequence.
From Antti Karttunen, Jan 28 2015: (Start)
The odd bisection of the sequence gives A253887, and the even bisection gives the sequence itself.
A254048 gives the sequence obtained when this sequence is restricted to A007494 (numbers congruent to 0 or 2 mod 3).
For all odd numbers k present in square array A135765, a(k) = the column index of k in that array. (End)
A322026 and this sequence (without the initial zero) are ordinal transforms of each other. - Antti Karttunen, Feb 09 2019
Also ordinal transform of A065331 (after the initial 0). - Antti Karttunen, Sep 08 2024

Crossrefs

One less than A126759.
Cf. A347233 (Möbius transform) and also A349390, A349393, A349395 for other Dirichlet convolutions.
Ordinal transform of A065331 and of A322026 (after the initial 0).
Related arrays: A135765, A254102.

Programs

  • Mathematica
    f[n_] := Block[{a}, a[0] = 0; a[1] = a[2] = a[3] = 1; a[x_] := Which[EvenQ@ x, a[x/2], Mod[x, 3] == 0, a[x/3], Mod[x, 6] == 1, 2 (x - 1)/6 + 1, Mod[x, 6] == 5, 2 (x - 5)/6 + 2]; Table[a@ i, {i, 0, n}]] (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    A126760(n)={n&&n\=3^valuation(n,3)<M. F. Hasler, Jan 19 2016

Formula

a(n) = A126759(n)-1. [The original definition.]
From Antti Karttunen, Jan 28 2015: (Start)
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
Or with the last clause represented in another way:
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n-1) = 2n.
Other identities. For all n >= 1:
a(n) = A253887(A003602(n)).
a(6n-3) = a(4n-2) = a(2n-1) = A253887(n).
(End)
a(n) = A249746(A003602(A064989(n))). - Antti Karttunen, Feb 04 2015
a(n) = A323882(4*n). - Antti Karttunen, Apr 18 2022

Extensions

Name replaced with an independent recurrence and the old description moved to the Formula section - Antti Karttunen, Jan 28 2015

A071521 Number of 3-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 3-smooth number is a number of the form 2^x * 3^y where x >= 0 and y >= 0.

References

  • Bruce C. Berndt and Robert A. Rankin, "Ramanujan : letters and commentary", History of Mathematics Volume 9, AMS-LMS, p. 23, p. 35.
  • G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, AMS Chelsea Pub., 1999, pages 67-82.

Crossrefs

Programs

  • Haskell
    a071521 n = length $ takeWhile (<= n) a003586_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    N:= 10000: # to get a(1) to a(N)
    V:= Vector(N):
    for y from 0 to floor(log[3](N)) do
      for x from 0 to ilog2(N/3^y) do
        V[2^x*3^y]:= 1
    od od:
    convert(map(round,Statistics:-CumulativeSum(V)),list); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_] := Sum[ MoebiusMu[6k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Oct 11 2011, after Benoit Cloitre *)
    f[n_] := Sum[Floor@Log[3, n/2^i] + 1, {i, 0, Log[2, n]}]; Array[f, 75] (* faster, or *)
    f[n_] := Sum[Floor@Log[2, n/3^i] + 1, {i, 0, Log[3, n]}]; Array[f, 75] (* Robert G. Wilson v, Aug 18 2012 *)
    Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<4,1,0],{n,80}]] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=3,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=sum(k=1,n,moebius(2*3*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • PARI
    a(n)=my(t=1/3); sum(k=0,logint(n,3), t*=3; logint(n\t,2)+1) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import integer_log
    def A071521(n): return sum((n//3**i).bit_length() for i in range(integer_log(n,3)[0]+1)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = Card{ k | A003586(k) <= n }. Asymptotically: let a=1/(2*log(2)*log(3)), b=sqrt(6), then from Ramanujan a(n) ~ a*log(2*n)*log(3*n) or equivalently a(n) ~ a*log(b*n)^2.
A022331(n) = a(A000079(n)); A022330(n) = a(A000244(n)). - Reinhard Zumkeller, May 09 2006
a(n) = Sum_{k=1..n} mu(6k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{k=1..n} (floor(6^k/k)-floor((6^k-1)/k)). - Anthony Browne, May 19 2016
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_2(n))} (floor(log_3(n/2^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_2(n/3^i)) + 1). (End)
A322026(n) = a(A065331(n)). - Antti Karttunen, Sep 08 2024

A072078 Number of 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 1, 4, 3, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 4, 3, 1, 4, 1, 6, 2, 2, 1, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 10, 1, 2, 2, 3, 1, 8, 1, 4, 2, 2, 1, 6, 1, 2, 3, 7, 1, 4, 1, 3, 2, 2, 1, 12, 1, 2, 2, 3, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2002

Keywords

Crossrefs

Programs

  • Magma
    [(Valuation(n,2)+1)*(Valuation(n,3)+1): n in [1..120]]; // Vincenzo Librandi, Mar 24 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[6*#]*DivisorSigma[0, n/#] &]; Array[a, 100] (* or *) a[n_] := ((1+IntegerExponent[n, 2])*(1+IntegerExponent[n, 3])); Array[a, 100] (* Amiram Eldar, Dec 03 2018 from the pari codes *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    A072078(n) = ((1+valuation(n,2))*(1+valuation(n,3))); \\ Antti Karttunen, Dec 03 2018
    

Formula

a(n) = A000005(A065331(n)).
a(n) = (A007814(n) + 1)*(A007949(n) + 1).
1/Product_{k>0} (1 - x^k + x^(2*k))^a(k) is g.f. for A000041(). - Vladeta Jovovic, Jun 07 2004
From Christian G. Bower, May 20 2005: (Start)
Multiplicative with a(2^e) = a(3^e) = e+1, a(p^e) = 1, p>3.
Dirichlet g.f.: 1/((1-1/2^s)*(1-1/3^s))^2 * Product{p prime > 3}(1/(1-1/p^s)). [corrected by Vaclav Kotesovec, Nov 20 2021] (End)
a(n) = Sum_{d divides n} mu(6d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)). - Ralf Stephan, Mar 24 2015; corrected by Vaclav Kotesovec, Nov 20 2021
Sum_{k=1..n} a(k) ~ 3*n. - Vaclav Kotesovec, Nov 20 2021

Extensions

More terms from Benoit Cloitre, Jun 21 2007

A244417 Exponents of 6 in appearing in the 6-adic value of 1/n, n>=1 (A244416).

Original entry on oeis.org

0, 1, 1, 2, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 3, 2, 0, 1, 0, 5, 1, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 2, 0, 1, 2, 6, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 1, 0, 4, 4, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 2, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jul 02 2014

Keywords

Comments

For the definition of 'g-dic value of 1/n' see a comment on A244416. In the Mahler reference, p. 7, the present exponent of 6 is there called f = f(1/n) for g = 6.

Examples

			See A244416.
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Cf. A122841, A244416, A007814 (g=2), A007949 (g=3), A244415 (g=4), A112765 (g=5), A051903, A065331.
Cf. also A322026, A322316.

Programs

  • Mathematica
    a[n_] := Max[IntegerExponent[n, {2, 3}]]; Array[a, 100] (* Amiram Eldar, Aug 19 2024 *)
  • PARI
    A244417(n) = max(valuation(n,2), valuation(n,3)); \\ Antti Karttunen, Dec 04 2018

Formula

a(n) = 0 if n is congruent 1 or 5 (mod 6). a(n) = max(A007814(n), A007949(n)) if n == 0 (mod 6). a(n) = A007814(n) if n == 2 or 4 (mod 6) and a(n) = A007949(n) if n == 3 (mod 6).
a(n) = max(A007814(n), A007949(n)), in all cases. - Antti Karttunen, Dec 04 2018
From Amiram Eldar, Aug 19 2024: (Start)
a(n) = A051903(A065331(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 13/10. (End)

A379005 Lexicographically earliest infinite sequence such that a(i) = a(j) => v_2(i) = v_2(j), v_3(i) = v_3(j) and v_5(i) = v_5(j), for all i, j, where v_2 (A007814), v_3 (A007949) and v_5 (A112765) give the 2-, 3- and 5-adic valuations of n respectively.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 7, 8, 9, 1, 10, 1, 2, 11, 12, 1, 13, 1, 14, 3, 2, 1, 15, 16, 2, 17, 4, 1, 18, 1, 19, 3, 2, 5, 20, 1, 2, 3, 21, 1, 6, 1, 4, 22, 2, 1, 23, 1, 24, 3, 4, 1, 25, 5, 7, 3, 2, 1, 26, 1, 2, 8, 27, 5, 6, 1, 4, 3, 9, 1, 28, 1, 2, 29, 4, 1, 6, 1, 30, 31, 2, 1, 10, 5, 2, 3, 7, 1, 32, 1, 4, 3, 2, 5, 33, 1, 2, 8, 34, 1, 6, 1, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of A355582.
For all i, j:
A379001(i) = A379001(j) => a(i) = a(j),
a(i) = a(j) => A322026(i) = A322026(j),
a(i) = a(j) => A379004(i) = A379004(j).

Crossrefs

Cf. A007814, A007949, A112765, A355582, A379006 (ordinal transform).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v379005 = rgs_transform(vector(up_to, n, [valuation(n,2), valuation(n,3), valuation(n,5)]));
    A379005(n) = v379005[n];

A322316 Lexicographically earliest such sequence a that a(i) = a(j) => A122841(i) = A122841(j) and A244417(i) = A244417(j), for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 1, 5, 3, 2, 1, 6, 1, 2, 2, 7, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 5, 3, 1, 4, 1, 9, 2, 2, 1, 10, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 11, 1, 2, 2, 3, 1, 8, 1, 5, 2, 2, 1, 6, 1, 2, 3, 12, 1, 4, 1, 3, 2, 2, 1, 13, 1, 2, 2, 3, 1, 4, 1, 7, 7, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 14, 1, 2, 3, 3, 1, 4, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A122841(n), A244417(n)].
Essentially also the restricted growth sequence transform of the unordered pair {A007814(n), A007949(n)}.
For all i, j: a(i) = a(j) => A072078(i) = A072078(j).

Crossrefs

Cf. A007814, A007949, A122841, A244417, A322026, A322317 (ordinal transform).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    A122841(n) = min(A007814(n), A007949(n));
    A244417(n) = max(valuation(n,2), valuation(n,3));
    v322316 = rgs_transform(vector(up_to, n, [A122841(n), A244417(n)]));
    \\ The following is equivalent:
    \\ v322316 = rgs_transform(vector(up_to, n, Set([A007814(n), A007949(n)])));
    A322316(n) = v322316[n];

A340680 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(1+i) = A007814(1+j) and A292251(i) = A292251(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 4, 2, 1, 2, 5, 2, 6, 2, 7, 2, 1, 2, 3, 2, 1, 2, 4, 2, 1, 2, 8, 2, 1, 2, 9, 2, 10, 2, 3, 2, 10, 2, 11, 2, 1, 2, 3, 2, 1, 2, 12, 2, 1, 2, 3, 2, 10, 2, 11, 2, 1, 2, 5, 2, 1, 2, 13, 2, 10, 2, 8, 2, 1, 2, 11, 2, 1, 2, 3, 2, 6, 2, 14, 2, 1, 2, 8, 2, 1, 2, 4, 2, 1, 2, 5, 2, 10, 2, 15, 2, 10, 2, 5, 2, 1, 2, 16, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(1+n), A292251(n)], where the first element is the 2-adic valuation of 1+n (i.e., the number of trailing 1-digits in the base-2 representation of n), and the latter element is the 3-adic valuation of A048673(n).
For all i, j: a(i) = a(j) => A341345(i) = A341345(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A292251(n) = valuation(A048673(n),3);
    Aux340680(n) = [A007814(1+n), A292251(n)];
    v340680 = rgs_transform(vector(up_to, n, Aux340680(n)));
    A340680(n) = v340680[n];

Formula

a(2n) = 2.
Showing 1-10 of 13 results. Next