cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322026 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    
  • PARI
    A065331(n) = (3^valuation(n, 3)<A065331
    A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
    A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024

Formula

For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)

A323882 Sum of A126760 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, 1, 1, 4, 0, 1, 0, 6, 4, 1, 0, 1, 0, 2, 6, 8, 0, 1, 4, 10, 1, 3, 0, 0, 0, 1, 8, 12, 12, 1, 0, 14, 10, 2, 0, 0, 0, 4, 2, 16, 0, 1, 9, 14, 12, 5, 0, 1, 16, 3, 14, 20, 0, 2, 0, 22, 3, 1, 20, 0, 0, 6, 16, 12, 0, 1, 0, 26, 14, 7, 24, 0, 0, 2, 1, 28, 0, 3, 24, 30, 20, 4, 0, 2, 30, 8, 22, 32, 28, 1, 0, 25, 4, 9, 0, 0, 0, 5, 12
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Comments

From Antti Karttunen, Aug 18 2021: (Start)
No negative terms in range 1 .. 2^20.
Apparently zeros occur only on (some of the) positions given by A030059, with exceptions for example on n = 70, 105, 110, 130, 154, etc, where a(n) > 0.
(End)

Crossrefs

Programs

  • PARI
    up_to = 20000;
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA126760(n)));
    A323881(n) = v323881[n];
    A323882(n) = (A126760(n)+A323881(n));

Formula

a(n) = A126760(n) + A323881(n).
For n > 1, a(n) = -Sum_{d|n, 1A126760(d) * A323881(n/d). - Antti Karttunen, Aug 18 2021

A323885 Sum of A001511 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 4, 0, 4, 1, 4, 0, 2, 0, 4, 2, 5, 0, 2, 0, 2, 2, 4, 0, 4, 1, 4, 1, 2, 0, 0, 0, 6, 2, 4, 2, 3, 0, 4, 2, 4, 0, 0, 0, 2, 1, 4, 0, 5, 1, 2, 2, 2, 0, 2, 2, 4, 2, 4, 0, 4, 0, 4, 1, 7, 2, 0, 0, 2, 2, 0, 0, 4, 0, 4, 1, 2, 2, 0, 0, 5, 1, 4, 0, 4, 2, 4, 2, 4, 0, 2, 2, 2, 2, 4, 2, 6, 0, 2, 1, 3, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A092673(n) = (moebius(n)-if(n%2,0,moebius(n/2)));
    A323885(n) = (A001511(n)+A092673(n));
    
  • Python
    from sympy import mobius
    def A323885(n): return (n&-n).bit_length()+mobius(n)-(0 if n&1 else mobius(n>>1)) # Chai Wah Wu, Jul 13 2022

Formula

a(n) = A001511(n) + A092673(n).

A323883 Dirichlet inverse of A322026.

Original entry on oeis.org

1, -2, -3, 0, -1, 7, -1, 2, 2, 2, -1, 0, -1, 2, 3, -1, -1, -6, -1, 0, 3, 2, -1, -11, 0, 2, 3, 0, -1, -7, -1, -1, 3, 2, 1, -1, -1, 2, 3, -2, -1, -7, -1, 0, -2, 2, -1, 7, 0, 0, 3, 0, -1, -9, 1, -2, 3, 2, -1, 0, -1, 2, -2, 3, 1, -7, -1, 0, 3, -2, -1, 20, -1, 2, 0, 0, 1, -7, -1, 1, -6, 2, -1, 0, 1, 2, 3, -2, -1, 6, 1, 0, 3, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA323883(n) = v323883[n];
Showing 1-4 of 4 results.