cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A249746 Permutation of natural numbers: a(n) = A126760(A249735(n)) = A249824(A064216(n)).

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 6, 12, 7, 8, 19, 10, 17, 42, 11, 13, 22, 26, 14, 29, 15, 16, 59, 18, 41, 32, 20, 31, 39, 21, 23, 92, 40, 24, 49, 25, 27, 82, 48, 28, 209, 30, 45, 52, 33, 63, 62, 54, 34, 109, 35, 36, 129, 37, 38, 69, 43, 68, 142, 70, 57, 72, 115, 44, 79, 46, 85, 292, 47, 50, 89, 74, 73, 202, 51, 53, 159, 87, 55, 99, 107, 56, 152, 58, 97, 192, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Comments

Permutation obtained from the odd bisection of A003961 (or from the odd bisection of A048673).

Examples

			a(5) = 9 because of the following. 2*A064216(5) = 2*4 = 8 = 2^3. We replace the prime factor 2 of 8 with the next prime 3 to get 3^3, then replace 3 with 5 to get 5^3 = 125. The smallest prime factor of 125 is 5. 125 is the 9th term of A084967: 5, 25, 35, 55, 65, 85, 95, 115, 125, ..., thus a(5) = 9.
		

Crossrefs

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]] ], #] &[f@ f[2 #]] &, Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 87}]] (* Michael De Vlieger, Jul 25 2016, Version 10 *)
  • Scheme
    (define (A249746 n) (define (Ainv_of_A007310off0 n) (+ (* 2 (floor->exact (/ n 6))) (/ (- (modulo n 6) 1) 4))) (+ 1 (Ainv_of_A007310off0 (A003961 (+ n n -1)))))

Formula

a(n) = 1 + f(A003961(2n - 1)), where f(n) = 2*floor[n/6] + ((n mod 6)-1)/4. [Here 1 + f(A007310(n)) = n.]
a(n) = A126760(A249735(n)). - Antti Karttunen, Jul 25 2016
As a composition of related permutations:
a(n) = A249824(A064216(n)).
Other identities. For all n >= 1:
A249735(n) = A007310(a(n)).
a(3n-1) = A273669(a(n)) and a(A254049(n)) = A273664(a(n)). - Antti Karttunen, Aug 07 2016

A347234 Dirichlet convolution of A126760 with A342001.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 6, 3, 10, 1, 17, 1, 13, 11, 10, 1, 16, 1, 26, 14, 18, 1, 31, 4, 21, 6, 35, 1, 61, 1, 15, 19, 26, 17, 36, 1, 29, 22, 49, 1, 82, 1, 50, 28, 34, 1, 49, 5, 36, 27, 59, 1, 28, 22, 67, 30, 42, 1, 139, 1, 45, 37, 21, 25, 117, 1, 74, 35, 127, 1, 63, 1, 53, 40, 83, 25, 138, 1, 79, 10, 58, 1, 190, 30, 61
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2021

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A126760(d) * A342001(n/d).

A347233 Möbius transform of A126760.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 6, 0, 0, 0, 7, 0, 7, 0, 0, 0, 9, 0, 10, 0, 0, 0, 8, 0, 12, 0, 0, 0, 13, 0, 14, 0, 0, 0, 15, 0, 14, 0, 0, 0, 17, 0, 14, 0, 0, 0, 19, 0, 20, 0, 0, 0, 16, 0, 22, 0, 0, 0, 23, 0, 24, 0, 0, 0, 20, 0, 26, 0, 0, 0, 27, 0, 22, 0, 0, 0, 29, 0, 24, 0, 0, 0, 24, 0, 32
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2021

Keywords

Crossrefs

Cf. A000004, A349339 (even and odd bisection).

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * MoebiusMu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A347233(n) = sumdiv(n,d,moebius(n/d)*A126760(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A126760(d).

A349390 Dirichlet convolution of A126760 with Kimberling's paraphrases, A003602.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 4, 8, 10, 10, 9, 12, 14, 17, 5, 15, 16, 17, 15, 24, 20, 20, 12, 28, 24, 22, 21, 25, 34, 27, 6, 35, 30, 47, 24, 32, 34, 42, 20, 35, 48, 37, 30, 50, 40, 40, 15, 54, 56, 53, 36, 45, 44, 71, 28, 60, 50, 50, 51, 52, 54, 71, 7, 84, 70, 57, 45, 71, 94, 60, 32, 62, 64, 100, 51, 99, 84, 67, 25, 63, 70, 70
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349391, A349392, A349393, A349395, A349431, A349444, A349447 for other Dirichlet convolutions of A126760. And also A349370.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, f[#] * k[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349390(n) = sumdiv(n,d,A126760(n/d)*A003602(d));

Formula

a(n) = Sum_{d|n} A126760(n/d) * A003602(d).

A349393 Inverse Möbius transform of A126760.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 3, 6, 5, 6, 6, 8, 6, 5, 7, 6, 8, 9, 8, 10, 9, 8, 12, 12, 4, 12, 11, 12, 12, 6, 10, 14, 18, 9, 14, 16, 12, 12, 15, 16, 16, 15, 9, 18, 17, 10, 21, 24, 14, 18, 19, 8, 26, 16, 16, 22, 21, 18, 22, 24, 12, 7, 30, 20, 24, 21, 18, 36, 25, 12, 26, 28, 24, 24, 34, 24, 28, 15, 5, 30, 29, 24, 38, 32, 22
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349391, A349392, A349395 for other Dirichlet convolutions of A126760. And also A349371.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349393(n) = sumdiv(n,d,A126760(d));
    
  • PARI
    a(n)=my(a=valuation(n,2),b=valuation(n,3),c=(a+1)*(b+1)); sumdiv(n/3^b>>a,d, d\6*2+d%3)*c; \\ Charles R Greathouse IV, Nov 16 2021

Formula

a(n) = Sum_{d|n} A126760(d).

A323882 Sum of A126760 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 2, 0, 1, 1, 4, 0, 1, 0, 6, 4, 1, 0, 1, 0, 2, 6, 8, 0, 1, 4, 10, 1, 3, 0, 0, 0, 1, 8, 12, 12, 1, 0, 14, 10, 2, 0, 0, 0, 4, 2, 16, 0, 1, 9, 14, 12, 5, 0, 1, 16, 3, 14, 20, 0, 2, 0, 22, 3, 1, 20, 0, 0, 6, 16, 12, 0, 1, 0, 26, 14, 7, 24, 0, 0, 2, 1, 28, 0, 3, 24, 30, 20, 4, 0, 2, 30, 8, 22, 32, 28, 1, 0, 25, 4, 9, 0, 0, 0, 5, 12
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Comments

From Antti Karttunen, Aug 18 2021: (Start)
No negative terms in range 1 .. 2^20.
Apparently zeros occur only on (some of the) positions given by A030059, with exceptions for example on n = 70, 105, 110, 130, 154, etc, where a(n) > 0.
(End)

Crossrefs

Programs

  • PARI
    up_to = 20000;
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA126760(n)));
    A323881(n) = v323881[n];
    A323882(n) = (A126760(n)+A323881(n));

Formula

a(n) = A126760(n) + A323881(n).
For n > 1, a(n) = -Sum_{d|n, 1A126760(d) * A323881(n/d). - Antti Karttunen, Aug 18 2021

A323881 Dirichlet inverse of A126760.

Original entry on oeis.org

1, -1, -1, 0, -2, 1, -3, 0, 0, 2, -4, 0, -5, 3, 2, 0, -6, 0, -7, 0, 3, 4, -8, 0, -5, 5, 0, 0, -10, -2, -11, 0, 4, 6, 0, 0, -13, 7, 5, 0, -14, -3, -15, 0, 0, 8, -16, 0, -8, 5, 6, 0, -18, 0, -3, 0, 7, 10, -20, 0, -21, 11, 0, 0, -2, -4, -23, 0, 8, 0, -24, 0, -25, 13, 5, 0, -2, -5, -27, 0, 0, 14, -28, 0, -5, 15, 10, 0, -30, 0, -1, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2019

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = Which[n == 0, 0, 0 < n < 4, 1, EvenQ[n], b[n/2], Mod[n, 3] == 0, b[n/3], Mod[n, 6] == 1, (n-1)/3 + 1, Mod[n, 6] == 5, (n-5)/3 + 2];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    v323881 = DirInverseCorrect(vector(up_to,n,A126760(n)));
    A323881(n) = v323881[n];

A349395 Dirichlet convolution of A126760 with Liouville's lambda.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 4, 0, 0, 1, 5, 0, 6, 1, 0, 0, 7, 0, 8, 0, 0, 2, 9, 0, 10, 0, 0, 0, 8, 1, 12, 0, 0, 0, 13, 0, 14, 3, 1, 0, 15, 0, 15, 0, 0, 4, 17, 0, 14, 0, 0, 0, 19, 0, 20, 0, 2, 1, 16, 0, 22, 5, 0, 0, 23, 0, 24, 0, 0, 6, 20, 0, 26, 1, 1, 0, 27, 0, 22, 0, 0, 0, 29, 0, 24, 7, 0, 0, 24, 0, 32, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349391, A349392, A349393 for other Dirichlet convolutions of A126760. And also A349375.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * LiouvilleLambda[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A008836(n) = ((-1)^bigomega(n));
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349395(n) = sumdiv(n,d,A126760(n/d)*A008836(d));

A254102 Square array A(row,col) = A253887(A254055(row,col)) = A126760(A254101(row,col)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 8, 3, 3, 6, 1, 6, 14, 1, 2, 9, 32, 68, 21, 2, 5, 20, 50, 24, 7, 122, 1, 10, 26, 4, 75, 284, 608, 183, 5, 12, 15, 39, 176, 446, 107, 456, 1094, 2, 7, 5, 86, 230, 132, 669, 2552, 5468, 1641, 1, 4, 38, 104, 129, 345, 1580, 4010, 1914, 2051, 9842
Offset: 1

Views

Author

Antti Karttunen, Jan 28 2015

Keywords

Comments

Starting with an odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 is found in A254051(row+1,col), and after iterated [i.e., we divide all powers of 2 out] Collatz step: x_new <- A139391(x) = A000265(3x+1) the resulting odd number x_new is located A135764(1,A254055(row+1,col)).
What the resulting odd number will be, is given by A254101(row+1,col) = A000265(A254051(row+1,col)).
That number's column index in array A135765 is then given by A(row+1,col).

Examples

			The top left corner of the array:
     1,    1,    1,    1,     3,     1,     2,    1,     5,     2,     1,
     1,    1,    4,    6,     2,     5,    10,   12,     7,     4,    16,
     2,    8,    1,    9,    20,    26,    15,    5,    38,    44,    12,
     3,    6,   32,   50,     4,    39,    86,  104,    57,    17,   140,
    14,   68,   24,   75,   176,   230,   129,   78,   338,   392,    53,
    21,    7,  284,  446,   132,   345,   770,  932,   507,   294,  1256,
   122,  608,  107,  669,  1580,  2066,  1155,   44,  3038,  3524,   942,
   183,  456, 2552, 4010,   593,  3099,  6926, 8384,  4557,   331, 11300,
  1094, 5468, 1914, 6015, 14216, 18590, 10389, 6288, 27338, 31712,   530,
etc.
		

Crossrefs

Programs

Formula

A(row,col) = A126760(A254051(row,col)) = A126760(A254101(row,col)).
A(row,col) = A253887(A254055(row,col)).
A(row+1,col) = A254048(A135765(row,col)).

A349392 Dirichlet convolution of A126760 with tau (number of divisors function).

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 10, 6, 12, 6, 18, 7, 15, 12, 15, 8, 18, 9, 24, 15, 18, 10, 30, 16, 21, 10, 30, 12, 36, 13, 21, 18, 24, 26, 36, 15, 27, 21, 40, 16, 45, 17, 36, 24, 30, 18, 45, 26, 48, 24, 42, 20, 30, 35, 50, 27, 36, 22, 72, 23, 39, 30, 28, 40, 54, 25, 48, 30, 78, 26, 60, 27, 45, 48, 54, 44, 63, 29, 60, 15, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349391, A349393, A349395 for other Dirichlet convolutions of A126760. And also A349372.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349392(n) = sumdiv(n,d,A126760(n/d)*numdiv(d));

Formula

a(n) = Sum_{d|n} A126760(n/d) * A000005(d).
Showing 1-10 of 35 results. Next