cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A126760 a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 9, 5, 1, 3, 10, 2, 11, 1, 4, 6, 12, 1, 13, 7, 5, 2, 14, 3, 15, 4, 2, 8, 16, 1, 17, 9, 6, 5, 18, 1, 19, 3, 7, 10, 20, 2, 21, 11, 3, 1, 22, 4, 23, 6, 8, 12, 24, 1, 25, 13, 9, 7, 26, 5, 27, 2, 1, 14, 28, 3, 29, 15, 10, 4, 30, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 19 2007

Keywords

Comments

For further information see A126759, which provided the original motivation for this sequence.
From Antti Karttunen, Jan 28 2015: (Start)
The odd bisection of the sequence gives A253887, and the even bisection gives the sequence itself.
A254048 gives the sequence obtained when this sequence is restricted to A007494 (numbers congruent to 0 or 2 mod 3).
For all odd numbers k present in square array A135765, a(k) = the column index of k in that array. (End)
A322026 and this sequence (without the initial zero) are ordinal transforms of each other. - Antti Karttunen, Feb 09 2019
Also ordinal transform of A065331 (after the initial 0). - Antti Karttunen, Sep 08 2024

Crossrefs

One less than A126759.
Cf. A347233 (Möbius transform) and also A349390, A349393, A349395 for other Dirichlet convolutions.
Ordinal transform of A065331 and of A322026 (after the initial 0).
Related arrays: A135765, A254102.

Programs

  • Mathematica
    f[n_] := Block[{a}, a[0] = 0; a[1] = a[2] = a[3] = 1; a[x_] := Which[EvenQ@ x, a[x/2], Mod[x, 3] == 0, a[x/3], Mod[x, 6] == 1, 2 (x - 1)/6 + 1, Mod[x, 6] == 5, 2 (x - 5)/6 + 2]; Table[a@ i, {i, 0, n}]] (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    A126760(n)={n&&n\=3^valuation(n,3)<M. F. Hasler, Jan 19 2016

Formula

a(n) = A126759(n)-1. [The original definition.]
From Antti Karttunen, Jan 28 2015: (Start)
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
Or with the last clause represented in another way:
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n-1) = 2n.
Other identities. For all n >= 1:
a(n) = A253887(A003602(n)).
a(6n-3) = a(4n-2) = a(2n-1) = A253887(n).
(End)
a(n) = A249746(A003602(A064989(n))). - Antti Karttunen, Feb 04 2015
a(n) = A323882(4*n). - Antti Karttunen, Apr 18 2022

Extensions

Name replaced with an independent recurrence and the old description moved to the Formula section - Antti Karttunen, Jan 28 2015

A349371 Inverse Möbius transform of Kimberling's paraphrases (A003602).

Original entry on oeis.org

1, 2, 3, 3, 4, 6, 5, 4, 8, 8, 7, 9, 8, 10, 14, 5, 10, 16, 11, 12, 18, 14, 13, 12, 17, 16, 22, 15, 16, 28, 17, 6, 26, 20, 26, 24, 20, 22, 30, 16, 22, 36, 23, 21, 42, 26, 25, 15, 30, 34, 38, 24, 28, 44, 38, 20, 42, 32, 31, 42, 32, 34, 55, 7, 44, 52, 35, 30, 50, 52, 37, 32, 38, 40, 65, 33, 50, 60, 41, 20, 63, 44, 43
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Comments

Dirichlet convolution of sigma (A000203) with A349431, or equally, A264740 with A349447. - Antti Karttunen, Nov 21 2021

Crossrefs

Cf. also A347954, A347955, A347956, A349136, A349370, A349372, A349373, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.
Cf. also A349393.

Programs

  • Mathematica
    k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A349371(n) = sumdiv(n,d,A003602(d));

Formula

a(n) = Sum_{d|n} A003602(d).
a(n) = Sum_{d|n} A000203(n/d)*A349431(d) = Sum_{d|n} A264740(n/d)*A349447(d). - Antti Karttunen, Nov 21 2021

A347233 Möbius transform of A126760.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 4, 0, 0, 0, 5, 0, 6, 0, 0, 0, 7, 0, 7, 0, 0, 0, 9, 0, 10, 0, 0, 0, 8, 0, 12, 0, 0, 0, 13, 0, 14, 0, 0, 0, 15, 0, 14, 0, 0, 0, 17, 0, 14, 0, 0, 0, 19, 0, 20, 0, 0, 0, 16, 0, 22, 0, 0, 0, 23, 0, 24, 0, 0, 0, 20, 0, 26, 0, 0, 0, 27, 0, 22, 0, 0, 0, 29, 0, 24, 0, 0, 0, 24, 0, 32
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2021

Keywords

Crossrefs

Cf. A000004, A349339 (even and odd bisection).

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * MoebiusMu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A347233(n) = sumdiv(n,d,moebius(n/d)*A126760(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A126760(d).

A349390 Dirichlet convolution of A126760 with Kimberling's paraphrases, A003602.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 4, 8, 10, 10, 9, 12, 14, 17, 5, 15, 16, 17, 15, 24, 20, 20, 12, 28, 24, 22, 21, 25, 34, 27, 6, 35, 30, 47, 24, 32, 34, 42, 20, 35, 48, 37, 30, 50, 40, 40, 15, 54, 56, 53, 36, 45, 44, 71, 28, 60, 50, 50, 51, 52, 54, 71, 7, 84, 70, 57, 45, 71, 94, 60, 32, 62, 64, 100, 51, 99, 84, 67, 25, 63, 70, 70
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349391, A349392, A349393, A349395, A349431, A349444, A349447 for other Dirichlet convolutions of A126760. And also A349370.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, f[#] * k[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349390(n) = sumdiv(n,d,A126760(n/d)*A003602(d));

Formula

a(n) = Sum_{d|n} A126760(n/d) * A003602(d).

A349395 Dirichlet convolution of A126760 with Liouville's lambda.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 4, 0, 0, 1, 5, 0, 6, 1, 0, 0, 7, 0, 8, 0, 0, 2, 9, 0, 10, 0, 0, 0, 8, 1, 12, 0, 0, 0, 13, 0, 14, 3, 1, 0, 15, 0, 15, 0, 0, 4, 17, 0, 14, 0, 0, 0, 19, 0, 20, 0, 2, 1, 16, 0, 22, 5, 0, 0, 23, 0, 24, 0, 0, 6, 20, 0, 26, 1, 1, 0, 27, 0, 22, 0, 0, 0, 29, 0, 24, 7, 0, 0, 24, 0, 32, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349391, A349392, A349393 for other Dirichlet convolutions of A126760. And also A349375.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * LiouvilleLambda[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A008836(n) = ((-1)^bigomega(n));
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349395(n) = sumdiv(n,d,A126760(n/d)*A008836(d));

A349392 Dirichlet convolution of A126760 with tau (number of divisors function).

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 10, 6, 12, 6, 18, 7, 15, 12, 15, 8, 18, 9, 24, 15, 18, 10, 30, 16, 21, 10, 30, 12, 36, 13, 21, 18, 24, 26, 36, 15, 27, 21, 40, 16, 45, 17, 36, 24, 30, 18, 45, 26, 48, 24, 42, 20, 30, 35, 50, 27, 36, 22, 72, 23, 39, 30, 28, 40, 54, 25, 48, 30, 78, 26, 60, 27, 45, 48, 54, 44, 63, 29, 60, 15, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349391, A349393, A349395 for other Dirichlet convolutions of A126760. And also A349372.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349392(n) = sumdiv(n,d,A126760(n/d)*numdiv(d));

Formula

a(n) = Sum_{d|n} A126760(n/d) * A000005(d).

A349391 Dirichlet convolution of A126760 with omega.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 5, 1, 7, 1, 6, 5, 4, 1, 7, 1, 9, 6, 7, 1, 10, 3, 8, 3, 11, 1, 16, 1, 5, 7, 9, 7, 12, 1, 10, 8, 13, 1, 20, 1, 13, 9, 11, 1, 13, 4, 18, 9, 15, 1, 10, 8, 16, 10, 13, 1, 27, 1, 14, 11, 6, 9, 24, 1, 17, 11, 32, 1, 17, 1, 16, 18, 19, 9, 28, 1, 17, 4, 17, 1, 34, 10, 18, 13, 19, 1, 27, 10, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347233, A347234, A349390, A349392, A349393, A349395 for other Dirichlet convolutions of A126760. And also A347957.

Programs

  • Mathematica
    f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * PrimeNu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    A349391(n) = sumdiv(n,d,A126760(n/d)*omega(d));

Formula

a(n) = Sum_{d|n} A126760(n/d) * A001221(d).

A353460 Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases).

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -3, 0, -3, 0, -2, 0, -4, 0, -1, 0, -4, 0, -5, 0, -5, 0, -3, 0, 1, 0, -6, 0, -4, 0, -7, 0, -7, 0, 0, 0, -8, 0, -4, 0, -5, 0, -9, 0, 3, 0, -6, 0, -10, 0, -10, 0, -1, 0, 2, 0, -11, 0, -7, 0, -12, 0, -12, 0, -3, 0, 1, 0, -13, 0, -8, 0, -14, 0, 4, 0, -9, 0, -15, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2022

Keywords

Comments

Taking the Dirichlet convolution between this sequence and A349371 gives A349393, and similarly for many other such analogous pairs.

Crossrefs

Cf. A003602, A126760, A349134, A353461 (Dirichlet inverse), A353462 (sum with it).

Programs

Formula

a(n) = Sum_{d|n} A126760(d) * A349134(n/d).

A353461 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A323881 (the Dirichlet inverse of A126760).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 3, 0, 3, 0, 3, 0, 4, 0, 4, 0, 2, 0, 9, 0, 5, 0, 5, 0, 7, 0, 1, 0, 6, 0, 8, 0, 7, 0, 7, 0, 9, 0, 8, 0, 5, 0, 11, 0, 9, 0, 1, 0, 12, 0, 10, 0, 10, 0, 12, 0, 2, 0, 11, 0, 15, 0, 12, 0, 12, 0, 10, 0, 3, 0, 13, 0, 27, 0, 14, 0, 2, 0, 19, 0, 15, 0, 4, 0, 20, 0, 3, 0, 16, 0, 21
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2022

Keywords

Comments

Taking the Dirichlet convolution between this sequence and A349393 gives A349371, and similarly for many other such analogous pairs.

Crossrefs

Cf. A003602, A126760, A323881, A353460 (Dirichlet inverse), A353462 (sum with it).
Cf. also A349371, A349393.

Programs

  • PARI
    up_to = 65537;
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A126760(n) = {n&&n\=3^valuation(n, 3)<A126760
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA126760(n)));
    A323881(n) = v323881[n];
    A353461(n) = sumdiv(n,d,A003602(d)*A323881(n/d));

Formula

a(n) = Sum_{d|n} A003602(d) * A323881(n/d).
a(n) = A353462(n) - A353460(n).
Showing 1-9 of 9 results.