cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A065331 Largest 3-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 1, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) < n^0.715. - Charles R Greathouse IV, May 21 2014

Crossrefs

Related to A053165 via A225546.
Cf. A126760 (ordinal transform of this sequence, from its term a(1) = 1 onward).

Programs

  • Haskell
    a065331 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 3 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Magma
    [Gcd(n,6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065331 := proc(n) n/A065330(n) ; end: # R. J. Mathar, Jun 24 2009
    seq(2^padic:-ordp(n,2)*3^padic:-ordp(n,3), n=1..100); # Robert Israel, Feb 08 2016
  • Mathematica
    Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
    a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • PARI
    a(n)=gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=gcd(6^logint(n,2),n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
    

Formula

a(n) = n / A065330(n).
a(n) = A006519(n) * A038500(n).
a(n) = (2^A007814 (n)) * (3^A007949(n)).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
a(A225546(n)) = A225546(A053165(n)). - Peter Munn, Jan 17 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
a(n) = A003586(A322026(n)), A322026(n) = A071521(a(n)). - Antti Karttunen, Sep 08 2024

A065333 Characteristic function of 3-smooth numbers, i.e., numbers of the form 2^i*3^j (i, j >= 0).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Dirichlet inverse of b(n) where b(n) = 0 except for: b(1) = b(6) = -b(2) = -b(3) = 1. - Alexander Adam, Dec 26 2012

Crossrefs

Characteristic function of A003586.
Cf. A000265, A007814, A007949, A038502, A065330, A065332, A071521 (partial sums), A072078 (inverse Möbius transform).

Programs

  • Haskell
    a065333 = fromEnum . (== 1) . a038502 . a000265
    -- Reinhard Zumkeller, Jan 08 2013, Apr 12 2012
    
  • Mathematica
    a[n_] := Boole[ 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] == n]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 16 2013, after Charles R Greathouse IV *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)) \\ Benoit Cloitre, Oct 18 2009
    
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from sympy import multiplicity
    def A065333(n): return int(3**(multiplicity(3,m:=n>>(~n&n-1).bit_length()))==m) # Chai Wah Wu, Dec 20 2024

Formula

a(n) = if n = A003586(k) for some k then 1 else 0.
a(n) = signum(A065332(n)), where signum = A057427.
a(n) = if A065330(n) = 1 then 1 else 0 = 1 - signum(A065330(n) - 1).
a(n) = Product_{p prime and p|n} 0^floor(p/4). - Reinhard Zumkeller, Nov 19 2004
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = 0 for prime p > 3. Dirichlet g.f. 1/(1-2^-s)/(1-3^-s). - Franklin T. Adams-Watters, Sep 01 2006
a(n) = 0^(A038502(A000265(n)) - 1). - Reinhard Zumkeller, Sep 28 2008
a(n) = Sum_{d|n} mu(6*d). - Benoit Cloitre, Oct 18 2009

A322026 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    
  • PARI
    A065331(n) = (3^valuation(n, 3)<A065331
    A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
    A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024

Formula

For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)

A022330 Index of 3^n within sequence of numbers of form 2^i*3^j (A003586).

Original entry on oeis.org

1, 3, 7, 12, 19, 27, 37, 49, 62, 77, 93, 111, 131, 152, 175, 199, 225, 252, 281, 312, 344, 378, 413, 450, 489, 529, 571, 614, 659, 705, 753, 803, 854, 907, 961, 1017, 1075, 1134, 1195, 1257, 1321, 1386, 1453, 1522, 1592, 1664, 1737, 1812, 1889, 1967, 2047, 2128
Offset: 0

Views

Author

Keywords

Comments

a(1000)=793775, a(10000)=79261054, a(100000)=7924941755, a(1000000)=792482542841.

Crossrefs

Cf. A022331, A020914 (first differences).

Programs

  • Mathematica
    c[0] = 1; c[n_] := 1 + Sum[Ceiling[j*Log[2, 3]], {j, n}]; Table[c[i], {i, 0, 51}] (* Norman Carey, Jun 13 2012 *)
  • PARI
    listsm(lim)=my(v=List(),N); for(n=0,log(lim)\log(3),N=3^n; while(N<=lim,listput(v,N);N<<=1)); v=Vec(v); vecsort(v)
    list(lim)=my(v=listsm(3^floor(lim)));vector(floor(lim+1),i,setsearch(v,3^(i-1))) \\ Charles R Greathouse IV, Aug 19 2011
    
  • PARI
    a(n)=sum(k=0,n, logint(3^k,2))+n+1 \\ Charles R Greathouse IV, Nov 22 2022
    
  • Python
    def A022330(n): return sum((3**i).bit_length() for i in range(n+1)) # Chai Wah Wu, Sep 16 2024

Formula

a(n) = A071521(A000244(n)); A003586(a(n)) = A000244(n). - Reinhard Zumkeller, May 09 2006
a(n) ~ kn^2 with k = log(3)/log(4) = 0.792.... More exact asymptotics? - Zak Seidov, Dec 22 2011
a(n+1) = a(n) + A020914(n+1). - Ruud H.G. van Tol, Nov 25 2022
kn^2 + kn + 1 <= a(n) <= kn^2 + (k+1)n + 1, so a(n) = kn^2 + O(n) with k = log(3)/log(4). The law of the iterated logarithm suggests that a better error term might be possible. - Charles R Greathouse IV, Nov 28 2022

A071520 Number of 5-smooth numbers (A051037) <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 5-smooth number is a number of the form 2^x*3^y*5^z (x,y,z) >= 0.

Crossrefs

Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), this sequence (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<6,1,0],{n,80}]] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=4,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=-sum(k=1,n,moebius(2*3*5*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • Python
    from sympy import integer_log
    def A071520(n):
        c = 0
        for i in range(integer_log(n,5)[0]+1):
            for j in range(integer_log(m:=n//5**i,3)[0]+1):
                c += (m//3**j).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) = Card{ k | A051037(k) <= n }.
Asymptotically : let a = 1/(6*log(2)*log(3)*log(5)) and b = sqrt(30) then a(n) = a*log(b*n)^3 + O(log(n)).
a(n) = -Sum_{k=1,n} mu(30*k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{i=0..floor(log_5(n))} Sum_{j=0..floor(log_3(n/5^i))} floor(log_2(2*n/(5^i*3^j))). - Ridouane Oudra, Jul 17 2020

Extensions

Title corrected by Rainer Rosenthal, Aug 30 2020

A022331 Index of 2^n within sequence of numbers of form 2^i*3^j (A003586).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 17, 22, 28, 34, 41, 48, 56, 65, 74, 84, 95, 106, 118, 130, 143, 157, 171, 186, 202, 218, 235, 253, 271, 290, 309, 329, 350, 371, 393, 416, 439, 463, 487, 512, 538, 564, 591, 619, 647, 676, 706, 736, 767, 798, 830, 863, 896, 930, 965, 1000, 1036, 1072
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000079, A003586, A071521, A020915 (first differences), A152747.
Cf. A022330 (index of 3^n within A003586).

Programs

  • Mathematica
    c[0] = 1; c[n_] := 1 + Sum[Ceiling[j*Log[3, 2]], {j, n}]; Table[c[i], {i, 0, 60}] (* Norman Carey, Jun 13 2012 *)
  • PARI
    a(n)=my(t=1);1+n+sum(k=1,n,logint(t*=2,3)) \\ Ruud H.G. van Tol, Nov 25 2022
    
  • Python
    from sympy import integer_log
    def A022331(n):
        m = 1<Chai Wah Wu, Sep 16 2024

Formula

a(n) = A071521(A000079(n)); A003586(a(n)) = A000079(n). - Reinhard Zumkeller, May 09 2006
a(n) ~ c * n^2, where c = log(2)/(2*log(3)) (A152747). - Amiram Eldar, Apr 07 2023

A071604 a(n) is the number of 7-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 17, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 30, 31, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 38
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 7-smooth number is a number of the form 2^x*3^y*5^z*7^u, (x,y,z,u) >= 0.
In other words, a 7-smooth number is a number with no prime factor greater than 7. - Peter Munn, Nov 20 2021

Examples

			a(11) = 10 as there are 10 7-smooth numbers <= 11. Namely 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - _David A. Corneth_, Apr 19 2021
		

Crossrefs

Partial sums of A086299.
Column 7 of A080786.
Equivalent sequences with other limits on greatest prime factor: A070939 (2), A071521 (3), A071520 (5), A071523 (11), A080684 (13), A080685 (17), A080686 (19), A096300 (log n).

Programs

  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=5,n,if(k%prime(i),0,1)),0,1)),","))
    
  • Python
    from sympy import integer_log
    def A071604(n):
        c = 0
        for i in range(integer_log(n,7)[0]+1):
            i7 = 7**i
            m = n//i7
            for j in range(integer_log(m,5)[0]+1):
                j5 = 5**j
                r = m//j5
                for k in range(integer_log(r,3)[0]+1):
                    c += (r//3**k).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) = Card{ k | A002473 (k) <= n }.

Extensions

Name corrected by David A. Corneth, Apr 19 2021

A080686 Number of 19-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 48, 49, 49, 49, 50, 51, 52, 53, 53, 54, 54, 55, 55, 56
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 19. Input pn=19 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080682.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), this sequence (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 19], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
    
  • Python
    from sympy import integer_log, prevprime
    def A080686(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,19) # Chai Wah Wu, Sep 17 2024

A071523 Number of 11-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 37, 38, 38, 38, 38, 39, 39, 39, 40, 41, 41, 42, 42, 42, 42, 43, 43, 44
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

An 11-smooth number is a number of the form 2^x*3^y*5^z*7^u*11^v (x,y,z,u,v) >= 0.

Crossrefs

Cf. A051038.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), this sequence (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<=11,1,0],{n,120}]] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=sum(k=1,n,(k<4) || 13>vecmax(factor(k)~[1,]))

Formula

a(n) = Card{ k | A051038(k) <= n }.

A080685 Number of 17-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 45, 45, 46, 46, 46, 47, 48, 49, 50, 50, 51, 51, 52, 52, 53
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 17. Input pn=17 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080681.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), this sequence (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 17], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
Showing 1-10 of 20 results. Next