cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A126760 a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 9, 5, 1, 3, 10, 2, 11, 1, 4, 6, 12, 1, 13, 7, 5, 2, 14, 3, 15, 4, 2, 8, 16, 1, 17, 9, 6, 5, 18, 1, 19, 3, 7, 10, 20, 2, 21, 11, 3, 1, 22, 4, 23, 6, 8, 12, 24, 1, 25, 13, 9, 7, 26, 5, 27, 2, 1, 14, 28, 3, 29, 15, 10, 4, 30, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 19 2007

Keywords

Comments

For further information see A126759, which provided the original motivation for this sequence.
From Antti Karttunen, Jan 28 2015: (Start)
The odd bisection of the sequence gives A253887, and the even bisection gives the sequence itself.
A254048 gives the sequence obtained when this sequence is restricted to A007494 (numbers congruent to 0 or 2 mod 3).
For all odd numbers k present in square array A135765, a(k) = the column index of k in that array. (End)
A322026 and this sequence (without the initial zero) are ordinal transforms of each other. - Antti Karttunen, Feb 09 2019
Also ordinal transform of A065331 (after the initial 0). - Antti Karttunen, Sep 08 2024

Crossrefs

One less than A126759.
Cf. A347233 (Möbius transform) and also A349390, A349393, A349395 for other Dirichlet convolutions.
Ordinal transform of A065331 and of A322026 (after the initial 0).
Related arrays: A135765, A254102.

Programs

  • Mathematica
    f[n_] := Block[{a}, a[0] = 0; a[1] = a[2] = a[3] = 1; a[x_] := Which[EvenQ@ x, a[x/2], Mod[x, 3] == 0, a[x/3], Mod[x, 6] == 1, 2 (x - 1)/6 + 1, Mod[x, 6] == 5, 2 (x - 5)/6 + 2]; Table[a@ i, {i, 0, n}]] (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    A126760(n)={n&&n\=3^valuation(n,3)<M. F. Hasler, Jan 19 2016

Formula

a(n) = A126759(n)-1. [The original definition.]
From Antti Karttunen, Jan 28 2015: (Start)
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
Or with the last clause represented in another way:
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n-1) = 2n.
Other identities. For all n >= 1:
a(n) = A253887(A003602(n)).
a(6n-3) = a(4n-2) = a(2n-1) = A253887(n).
(End)
a(n) = A249746(A003602(A064989(n))). - Antti Karttunen, Feb 04 2015
a(n) = A323882(4*n). - Antti Karttunen, Apr 18 2022

Extensions

Name replaced with an independent recurrence and the old description moved to the Formula section - Antti Karttunen, Jan 28 2015

A065330 a(n) = max { k | gcd(n, k) = k and gcd(k, 6) = 1 }.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 25, 13, 1, 7, 29, 5, 31, 1, 11, 17, 35, 1, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 5, 61, 31, 7, 1, 65, 11, 67, 17, 23, 35, 71, 1, 73, 37, 25, 19, 77, 13, 79, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) > n^0.285. - Charles R Greathouse IV, May 21 2014

Examples

			a(30) = 5.
		

Crossrefs

Programs

  • Haskell
    a065330 = a038502 . a000265  -- Reinhard Zumkeller, Jul 06 2011
    
  • Magma
    [n div Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065330 := proc(n)
        local a,f,p,e ;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            if p > 3 then
                a := a*p^e ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 12 2012
    with(padic): a := n -> n/(2^ordp(n, 2)*3^ordp(n, 3));
    seq(a(n), n=1..81); # Peter Luschny, Mar 25 2014
  • Mathematica
    f[n_] := Times @@ (First@#^Last@# & /@ Select[FactorInteger@n, First@# != 2 && First@# != 3 &]); Array[f, 81] (* Robert G. Wilson v, Aug 18 2006 *)
    f[n_]:=Denominator[6^n/n];Array[f,100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    Table[n / GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
  • PARI
    a(n)=if(n<2,1,if(n%2,if(n%3,n,a(n/3)),a(n/2))) \\ Benoit Cloitre, Jun 04 2007
    
  • PARI
    a(n)=n\gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=n>>valuation(n,2)/3^valuation(n,3) \\ Charles R Greathouse IV, Mar 31 2016
    

Formula

a(n) * A065331(n) = n.
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=p^e, p>3. - Vladeta Jovovic, Nov 02 2001
A106799(n) = A001222(a(n)). - Reinhard Zumkeller, May 19 2005
a(1)=1; then a(2n)=a(n), a(2n+1)=a((2n+1)/3) if 2n+1 is divisible by 3, a(2n+1)=2n+1 otherwise. - Benoit Cloitre, Jun 04 2007
Dirichlet g.f. zeta(s-1)*(1-2^(1-s))*(1-3^(1-s))/ ( (1-2^(-s))*(1-3^(-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = A038502(A000265(n)). - Reinhard Zumkeller, Jul 06 2011
a(n) = n/GCD(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ (1/4) * n^2. - Amiram Eldar, Oct 22 2022

A071521 Number of 3-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 3-smooth number is a number of the form 2^x * 3^y where x >= 0 and y >= 0.

References

  • Bruce C. Berndt and Robert A. Rankin, "Ramanujan : letters and commentary", History of Mathematics Volume 9, AMS-LMS, p. 23, p. 35.
  • G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, AMS Chelsea Pub., 1999, pages 67-82.

Crossrefs

Programs

  • Haskell
    a071521 n = length $ takeWhile (<= n) a003586_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    N:= 10000: # to get a(1) to a(N)
    V:= Vector(N):
    for y from 0 to floor(log[3](N)) do
      for x from 0 to ilog2(N/3^y) do
        V[2^x*3^y]:= 1
    od od:
    convert(map(round,Statistics:-CumulativeSum(V)),list); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_] := Sum[ MoebiusMu[6k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Oct 11 2011, after Benoit Cloitre *)
    f[n_] := Sum[Floor@Log[3, n/2^i] + 1, {i, 0, Log[2, n]}]; Array[f, 75] (* faster, or *)
    f[n_] := Sum[Floor@Log[2, n/3^i] + 1, {i, 0, Log[3, n]}]; Array[f, 75] (* Robert G. Wilson v, Aug 18 2012 *)
    Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<4,1,0],{n,80}]] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=3,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=sum(k=1,n,moebius(2*3*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • PARI
    a(n)=my(t=1/3); sum(k=0,logint(n,3), t*=3; logint(n\t,2)+1) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import integer_log
    def A071521(n): return sum((n//3**i).bit_length() for i in range(integer_log(n,3)[0]+1)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = Card{ k | A003586(k) <= n }. Asymptotically: let a=1/(2*log(2)*log(3)), b=sqrt(6), then from Ramanujan a(n) ~ a*log(2*n)*log(3*n) or equivalently a(n) ~ a*log(b*n)^2.
A022331(n) = a(A000079(n)); A022330(n) = a(A000244(n)). - Reinhard Zumkeller, May 09 2006
a(n) = Sum_{k=1..n} mu(6k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{k=1..n} (floor(6^k/k)-floor((6^k-1)/k)). - Anthony Browne, May 19 2016
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_2(n))} (floor(log_3(n/2^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_2(n/3^i)) + 1). (End)
A322026(n) = a(A065331(n)). - Antti Karttunen, Sep 08 2024

A065338 a(1) = 1, a(p) = p mod 4 for p prime and a(u * v) = a(u) * a(v) for u, v > 0.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 3, 8, 9, 2, 3, 12, 1, 6, 3, 16, 1, 18, 3, 4, 9, 6, 3, 24, 1, 2, 27, 12, 1, 6, 3, 32, 9, 2, 3, 36, 1, 6, 3, 8, 1, 18, 3, 12, 9, 6, 3, 48, 9, 2, 3, 4, 1, 54, 3, 24, 9, 2, 3, 12, 1, 6, 27, 64, 1, 18, 3, 4, 9, 6, 3, 72, 1, 2, 3, 12, 9, 6, 3, 16, 81, 2, 3, 36, 1, 6, 3, 24, 1, 18, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Examples

			a(120) = a(2*2*2*3*5) = a(2)*a(2)*a(2)*a(3)*a(5) = 2*2*2*3*1 = 24.
a(150) = a(2*3*5*5) = a(2)*a(3)*a(5)*a(5) = 2*3*1*1 = 6.
a(210) = a(2*3*5*7) = a(2)*a(3)*a(5)*a(7) = 2*3*1*3 = 18.
		

Crossrefs

Programs

  • Haskell
    a065338 1 = 1
    a065338 n = (spf `mod` 4) * a065338 (n `div` spf) where spf = a020639 n
    -- Reinhard Zumkeller, Nov 18 2011
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Mod[p = FactorInteger[n][[1, 1]], 4]*a[n/p]; Table[ a[n], {n, 1, 100} ] (* Jean-François Alcover, Jan 20 2012 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, (f[i,1]%4)^f[i,2]) \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = 1 if n = 1, otherwise (A020639(n) mod 4) * n / A020639(n).
a(n) = (2^A007814(n)) * (3^A065339(n)).
a(n) <= n.
a(a(n)) = a(n).
a(x) = x iff x = 2^i * 3^j for i, j >= 0.
a(A003586(n)) = A003586(n).
a(A065331(n)) = A065331(n).
a(A004613(n)) = 1; A065333(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2010
Dirichlet g.f.: (1/(1-2^(-s+1))) * Product_{prime p=4k+1} (1/(1-p^(-s))) * Product_{prime p=4k+3} 1/(1-3*p^(-s)). - Ralf Stephan, Mar 28 2015

A072078 Number of 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 4, 1, 4, 3, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 4, 3, 1, 4, 1, 6, 2, 2, 1, 9, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 10, 1, 2, 2, 3, 1, 8, 1, 4, 2, 2, 1, 6, 1, 2, 3, 7, 1, 4, 1, 3, 2, 2, 1, 12, 1, 2, 2, 3, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2002

Keywords

Crossrefs

Programs

  • Magma
    [(Valuation(n,2)+1)*(Valuation(n,3)+1): n in [1..120]]; // Vincenzo Librandi, Mar 24 2015
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[6*#]*DivisorSigma[0, n/#] &]; Array[a, 100] (* or *) a[n_] := ((1+IntegerExponent[n, 2])*(1+IntegerExponent[n, 3])); Array[a, 100] (* Amiram Eldar, Dec 03 2018 from the pari codes *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    A072078(n) = ((1+valuation(n,2))*(1+valuation(n,3))); \\ Antti Karttunen, Dec 03 2018
    

Formula

a(n) = A000005(A065331(n)).
a(n) = (A007814(n) + 1)*(A007949(n) + 1).
1/Product_{k>0} (1 - x^k + x^(2*k))^a(k) is g.f. for A000041(). - Vladeta Jovovic, Jun 07 2004
From Christian G. Bower, May 20 2005: (Start)
Multiplicative with a(2^e) = a(3^e) = e+1, a(p^e) = 1, p>3.
Dirichlet g.f.: 1/((1-1/2^s)*(1-1/3^s))^2 * Product{p prime > 3}(1/(1-1/p^s)). [corrected by Vaclav Kotesovec, Nov 20 2021] (End)
a(n) = Sum_{d divides n} mu(6d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)). - Ralf Stephan, Mar 24 2015; corrected by Vaclav Kotesovec, Nov 20 2021
Sum_{k=1..n} a(k) ~ 3*n. - Vaclav Kotesovec, Nov 20 2021

Extensions

More terms from Benoit Cloitre, Jun 21 2007

A384057 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 3-smooth number.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 12, 12, 12, 12, 16, 16, 18, 18, 16, 18, 20, 22, 24, 24, 24, 27, 24, 28, 24, 30, 32, 30, 32, 24, 36, 36, 36, 36, 32, 40, 36, 42, 40, 36, 44, 46, 48, 48, 48, 48, 48, 52, 54, 40, 48, 54, 56, 58, 48, 60, 60, 54, 64, 48, 60, 66, 64
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Comments

First differs A372671 from at n = 25.

Crossrefs

Unitary analog of A372671.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), this sequence (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[p < 5, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,1] < 5, 0, 1));}

Formula

Multiplicative with a(p^e) = p^e if p <= 3, and p^e-1 if p >= 5.
a(n) = n * A047994(n) / A384058(n).
a(n) = A047994(A065330(n)) * A065331(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1-1/2^s)/(1-1/2^(s-1)+1/2^(2*s-1))) * ((1-1/3^s)/(1-2/3^s+1/3^(2*s-1))) * Product_{p prime} (1 - 2/p^s + 1/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ (36/55) * c * n^2, where c = Product_{p prime} (1 - 1/(p*(p+1))) = A065463.
In general, the average order of the number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a p-smooth number (i.e., not divisible by any prime larger than the prime p) is (1/2) * Product_{q prime <= p} (1 + 1/(q^2+q-1)) * A065463 * n^2.

A384058 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 5-rough number (A007310).

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 7, 7, 8, 5, 11, 6, 13, 7, 10, 15, 17, 8, 19, 15, 14, 11, 23, 14, 25, 13, 26, 21, 29, 10, 31, 31, 22, 17, 35, 24, 37, 19, 26, 35, 41, 14, 43, 33, 40, 23, 47, 30, 49, 25, 34, 39, 53, 26, 55, 49, 38, 29, 59, 30, 61, 31, 56, 63, 65, 22, 67, 51, 46
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A384042.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[p < 5, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,1] < 5, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e-1 if p <= 3, and p^e if p >= 5.
a(n) = n * A047994(n) / A384057(n).
a(n) = A047994(A065331(n)) * A065330(n).
Dirichlet g.f.: zeta(s-1) * ((1 - 1/2^(s-1) + 1/2^(2*s-1))/(1 - 1/2^s)) * ((1 - 2/3^s + 1/3^(2*s-1))/(1 - 1/3^s)).
Sum_{k=1..n} a(k) ~ (55/144) * n^2.
In general, the average order of the number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a p-rough number (i.e., not divisible by any prime smaller than the prime p) is (1/2) * Product_{q prime <= p} (1 - 1/q + 1/(q+1)) * n^2.

A053165 4th-power-free part of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Henry Bottomley, Feb 29 2000

Keywords

Crossrefs

Equivalent sequences for other powers: A007913 (2), A050985 (3).
A003961, A059897 are used to express relationship between terms of this sequence.
Related to A065331 via A225546.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n)=my(f=factor(n)); f[,2]=f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Sep 02 2015
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    def A053165(n):
        return 1 if n <=1 else reduce(mul,[p**(e % 4) for p,e in factorint(n).items()])
    # Chai Wah Wu, Feb 04 2015
    

Formula

a(n) = n/A008835(n).
Dirichlet g.f.: zeta(4s)*zeta(s-1)/zeta(4s-4). The Dirichlet convolution of this sequence with A008835 is A000203. - R. J. Mathar, Apr 05 2011
From Peter Munn, Jan 15 2020: (Start)
a(2) = 2; a(4) = 4; a(n^4) = 1; a(A003961(n)) = A003961(a(n)); a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A065331(n)).
(End)
Multiplicative with a(p^e) = p^(e mod 4). - Amiram Eldar, Sep 07 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 210. - Vaclav Kotesovec, Aug 20 2021

A322026 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.

Crossrefs

Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
    A322026(n) = v322026[n];
    
  • PARI
    A065331(n) = (3^valuation(n, 3)<A065331
    A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
    A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024

Formula

For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)
Showing 1-10 of 36 results. Next