cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A336457 a(n) = A065330(sigma(n)), where A065330 is fully multiplicative with a(2) = a(3) = 1, and a(p) = p for primes p > 3.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 7, 1, 1, 31, 1, 13, 5, 7, 1, 1, 1, 5, 31, 7, 5, 7, 5, 1, 1, 7, 1, 1, 1, 91, 19, 5, 7, 5, 7, 1, 11, 7, 13, 1, 1, 31, 19, 31, 1, 49, 1, 5, 1, 5, 5, 5, 5, 7, 31, 1, 13, 127, 7, 1, 17, 7, 1, 1, 1, 65, 37, 19, 31, 35, 1, 7, 5, 31, 121, 7, 7, 7, 1, 11, 5, 5, 5, 13, 7, 7, 1, 1, 5, 7, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Sequence removes prime factors 2 and 3 from the prime factorization of the sum of divisors of n.

Crossrefs

Programs

Formula

a(n) = A065330(A000203(n)) = A038502(A161942(n)).
Multiplicative with a(p^e) = A065330(1 + p + p^2 + ... + p^e).

A336458 Numbers k for which A065330(k) = A065330(sigma(k)).

Original entry on oeis.org

1, 2, 3, 6, 28, 40, 84, 120, 135, 224, 270, 496, 672, 819, 1488, 1638, 3780, 8128, 10880, 24384, 30240, 32640, 32760, 66960, 167400, 174592, 406224, 523776, 1097280, 2178540, 3138345, 6276690, 6517665, 6656832, 8910720, 10480640, 13035330, 14705145, 17428320, 23569920, 29410290, 31441920, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Numbers k for which A065330(k) = A336457(k).
Question: Is this a subsequence of A336461?

Crossrefs

Cf. A336461.
Subsequences: A000396, A005820.

Programs

A336459 a(n) = A065330(sigma(sigma(n))), where A065330 is fully multiplicative with a(2) = a(3) = 1, and a(p) = p for primes p > 3.

Original entry on oeis.org

1, 1, 7, 1, 1, 7, 5, 1, 7, 13, 7, 7, 1, 5, 5, 1, 13, 7, 7, 1, 7, 91, 5, 7, 1, 1, 5, 5, 1, 65, 7, 13, 31, 5, 31, 7, 5, 7, 5, 13, 1, 7, 7, 7, 7, 65, 31, 7, 5, 1, 65, 19, 5, 5, 65, 5, 31, 13, 7, 5, 1, 7, 35, 1, 7, 403, 7, 13, 7, 403, 65, 7, 19, 5, 7, 7, 7, 5, 31, 1, 133, 13, 7, 7, 35, 7, 5, 91, 13, 91, 31, 5, 85, 403
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Comments

Sequence removes prime factors 2 and 3 from the prime factorization A051027(n) = sigma(sigma(n)).
Like A051027, neither this is multiplicative. For example, we have a(3) = 7, a(7) = 5, but a(21) = 7 <> 35. However, for example, a(10) = 13, and a(3*10) = a(3)*a(10) = 65.

Crossrefs

Cf. A000203, A051027, A065330, A336456 (similar sequence), A336457.
Cf. also A336561 (positions where this appears to be multiplicative but A051027 does not).

Programs

Formula

a(n) = A336457(A000203(n)) = A065330(A051027(n)).

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A038502 Remove 3's from n.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 19, 20, 7, 22, 23, 8, 25, 26, 1, 28, 29, 10, 31, 32, 11, 34, 35, 4, 37, 38, 13, 40, 41, 14, 43, 44, 5, 46, 47, 16, 49, 50, 17, 52, 53, 2, 55, 56, 19, 58, 59, 20, 61, 62, 7, 64, 65, 22, 67, 68, 23, 70, 71, 8, 73, 74, 25, 76
Offset: 1

Views

Author

Keywords

Comments

As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019
The largest divisor of n not divisible by 3. - Amiram Eldar, Sep 15 2020

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (2*3)*G(x^3) - (2*9)*G(x^9) - (2*27)*G(x^27) - ..., where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (2/3)*H(x^3) - (2/9)*H(x^9) - (2/27)*H(x^27) - ..., where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (2/3^2)*L(x^3) - (2/9^2)*L(x^9) - (2/27^2)*L(x^27) - ..., where L(x) = Log(1/(1 - x)).
Also, Sum_{n >= 1} 1/a(n)*x^n = L(x) + (2/3)*L(x^3) + (2/3)*L(x^9) + (2/3)*L(x^27) + ... .
(End)
		

Crossrefs

Result of iterative removal of other factors: A000265 (2), A065883 (4), A132739 (5), A244414 (6), A242603 (7), A004151 (10).

Programs

  • Haskell
    a038502 n = if m > 0 then n else a038502 n'  where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Jan 03 2011
    
  • Magma
    [n/3^Valuation(n,3): n in [1..80]]; // Bruno Berselli, May 21 2013
  • Mathematica
    f[n_] := Times @@ (First@#^Last@# & /@ Select[ FactorInteger@n, First@# != 3 &]); Array[f, 76] (* Robert G. Wilson v, Jul 31 2006 *)
    Table[n/3^IntegerExponent[n, 3], {n, 100}] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=if(n<1, 0, n/3^valuation(n,3)) /* Michael Somos, Nov 10 2005 */
    

Formula

Multiplicative with a(p^e) = 1 if p = 3, otherwise p^e. - Mitch Harris, Apr 19 2005
a(0) = 0, a(3*n) = a(n), a(3*n+1) = 3*n+1, a(3*n+2) = 3*n+2.
Dirichlet g.f. zeta(s-1)*(3^s-3)/(3^s-1). - R. J. Mathar, Feb 11 2011
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,3^n).
O.g.f.: F(x) - 2*F(x^3) - 2*F(x^9) - 2*F(x^27) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers. More generally, for m >= 1,
Sum_{n >= 0} a(n)^m*x^n = F(m,x) - (3^m - 1)( F(m,x^3) + F(m,x^9) + F(m,x^27) + ... ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (3/8) * n^2. - Amiram Eldar, Oct 29 2022
a(n) = n / A038500(n). - R. J. Mathar, Mar 13 2024

A065331 Largest 3-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 3, 16, 1, 18, 1, 4, 3, 2, 1, 24, 1, 2, 27, 4, 1, 6, 1, 32, 3, 2, 1, 36, 1, 2, 3, 8, 1, 6, 1, 4, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 12, 1, 2, 9, 64, 1, 6, 1, 4, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 16, 81, 2, 1, 12, 1, 2, 3, 8, 1, 18, 1, 4, 3, 2, 1, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) < n^0.715. - Charles R Greathouse IV, May 21 2014

Crossrefs

Related to A053165 via A225546.
Cf. A126760 (ordinal transform of this sequence, from its term a(1) = 1 onward).

Programs

  • Haskell
    a065331 = f 2 1 where
       f p y x | r == 0    = f p (y * p) x'
               | otherwise = if p == 2 then f 3 y x else y
               where (x', r) = divMod x p
    -- Reinhard Zumkeller, Nov 19 2015
    
  • Magma
    [Gcd(n,6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065331 := proc(n) n/A065330(n) ; end: # R. J. Mathar, Jun 24 2009
    seq(2^padic:-ordp(n,2)*3^padic:-ordp(n,3), n=1..100); # Robert Israel, Feb 08 2016
  • Mathematica
    Table[GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
    a[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • PARI
    a(n)=gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=gcd(6^logint(n,2),n) \\ 'optimized' version of Sykora's script; Charles R Greathouse IV, Jul 23 2024
    

Formula

a(n) = n / A065330(n).
a(n) = A006519(n) * A038500(n).
a(n) = (2^A007814 (n)) * (3^A007949(n)).
Multiplicative with a(2^e)=2^e, a(3^e)=3^e, a(p^e)=1, p>3. - Vladeta Jovovic, Nov 05 2001
Dirichlet g.f.: zeta(s)*(1-2^(-s))*(1-3^(-s))/ ( (1-2^(1-s))*(1-3^(1-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = gcd(n,6^n). - Stanislav Sykora, Feb 08 2016
a(A225546(n)) = A225546(A053165(n)). - Peter Munn, Jan 17 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2 + (2*gamma + 3*log(2) + 2*log(3) - 2)*log(n) + (2 + log(2)^2/6 + 3*log(2)*(log(3) - 1) - 2*log(3) + log(3)^2/6 + gamma*(3*log(2) + 2*log(3) - 2) - 2*sg1)) / (6*log(2)*log(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 19 2020
a(n) = A003586(A322026(n)), A322026(n) = A071521(a(n)). - Antti Karttunen, Sep 08 2024

A065333 Characteristic function of 3-smooth numbers, i.e., numbers of the form 2^i*3^j (i, j >= 0).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Dirichlet inverse of b(n) where b(n) = 0 except for: b(1) = b(6) = -b(2) = -b(3) = 1. - Alexander Adam, Dec 26 2012

Crossrefs

Characteristic function of A003586.
Cf. A000265, A007814, A007949, A038502, A065330, A065332, A071521 (partial sums), A072078 (inverse Möbius transform).

Programs

  • Haskell
    a065333 = fromEnum . (== 1) . a038502 . a000265
    -- Reinhard Zumkeller, Jan 08 2013, Apr 12 2012
    
  • Mathematica
    a[n_] := Boole[ 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] == n]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 16 2013, after Charles R Greathouse IV *)
  • PARI
    a(n)=sumdiv(n,d,moebius(6*d)) \\ Benoit Cloitre, Oct 18 2009
    
  • PARI
    a(n)=3^valuation(n,3)<Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from sympy import multiplicity
    def A065333(n): return int(3**(multiplicity(3,m:=n>>(~n&n-1).bit_length()))==m) # Chai Wah Wu, Dec 20 2024

Formula

a(n) = if n = A003586(k) for some k then 1 else 0.
a(n) = signum(A065332(n)), where signum = A057427.
a(n) = if A065330(n) = 1 then 1 else 0 = 1 - signum(A065330(n) - 1).
a(n) = Product_{p prime and p|n} 0^floor(p/4). - Reinhard Zumkeller, Nov 19 2004
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = 0 for prime p > 3. Dirichlet g.f. 1/(1-2^-s)/(1-3^-s). - Franklin T. Adams-Watters, Sep 01 2006
a(n) = 0^(A038502(A000265(n)) - 1). - Reinhard Zumkeller, Sep 28 2008
a(n) = Sum_{d|n} mu(6*d). - Benoit Cloitre, Oct 18 2009

A384057 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 3-smooth number.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 12, 12, 12, 12, 16, 16, 18, 18, 16, 18, 20, 22, 24, 24, 24, 27, 24, 28, 24, 30, 32, 30, 32, 24, 36, 36, 36, 36, 32, 40, 36, 42, 40, 36, 44, 46, 48, 48, 48, 48, 48, 52, 54, 40, 48, 54, 56, 58, 48, 60, 60, 54, 64, 48, 60, 66, 64
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Comments

First differs A372671 from at n = 25.

Crossrefs

Unitary analog of A372671.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), this sequence (3-smooth), A384058 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[p < 5, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,1] < 5, 0, 1));}

Formula

Multiplicative with a(p^e) = p^e if p <= 3, and p^e-1 if p >= 5.
a(n) = n * A047994(n) / A384058(n).
a(n) = A047994(A065330(n)) * A065331(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1-1/2^s)/(1-1/2^(s-1)+1/2^(2*s-1))) * ((1-1/3^s)/(1-2/3^s+1/3^(2*s-1))) * Product_{p prime} (1 - 2/p^s + 1/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ (36/55) * c * n^2, where c = Product_{p prime} (1 - 1/(p*(p+1))) = A065463.
In general, the average order of the number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a p-smooth number (i.e., not divisible by any prime larger than the prime p) is (1/2) * Product_{q prime <= p} (1 + 1/(q^2+q-1)) * A065463 * n^2.

A384058 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 5-rough number (A007310).

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 7, 7, 8, 5, 11, 6, 13, 7, 10, 15, 17, 8, 19, 15, 14, 11, 23, 14, 25, 13, 26, 21, 29, 10, 31, 31, 22, 17, 35, 24, 37, 19, 26, 35, 41, 14, 43, 33, 40, 23, 47, 30, 49, 25, 34, 39, 53, 26, 55, 49, 38, 29, 59, 30, 61, 31, 56, 63, 65, 22, 67, 51, 46
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Crossrefs

Unitary analog of A384042.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := p^e - If[p < 5, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,1] < 5, 1, 0));}

Formula

Multiplicative with a(p^e) = p^e-1 if p <= 3, and p^e if p >= 5.
a(n) = n * A047994(n) / A384057(n).
a(n) = A047994(A065331(n)) * A065330(n).
Dirichlet g.f.: zeta(s-1) * ((1 - 1/2^(s-1) + 1/2^(2*s-1))/(1 - 1/2^s)) * ((1 - 2/3^s + 1/3^(2*s-1))/(1 - 1/3^s)).
Sum_{k=1..n} a(k) ~ (55/144) * n^2.
In general, the average order of the number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a p-rough number (i.e., not divisible by any prime smaller than the prime p) is (1/2) * Product_{q prime <= p} (1 - 1/q + 1/(q+1)) * n^2.

A064614 Exchange 2 and 3 in the prime factorization of n.

Original entry on oeis.org

1, 3, 2, 9, 5, 6, 7, 27, 4, 15, 11, 18, 13, 21, 10, 81, 17, 12, 19, 45, 14, 33, 23, 54, 25, 39, 8, 63, 29, 30, 31, 243, 22, 51, 35, 36, 37, 57, 26, 135, 41, 42, 43, 99, 20, 69, 47, 162, 49, 75, 34, 117, 53, 24, 55, 189, 38, 87, 59, 90, 61, 93, 28, 729, 65, 66, 67, 153, 46
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2001

Keywords

Comments

A self-inverse permutation of the natural numbers.
a(1) = 1, a(2) = 3, a(3) = 2, a(p) = p for primes p > 3 and a(u * v) = a(u) * a(v) for u, v > 0.
A permutation of the natural numbers: a(a(n)) = n for all n and a(n) = n iff n = 6^k * m for k >= 0 and m > 0 with gcd(m, 6) = 1 (see A064615).
A000244 and A000079 give record values and where they occur. - Reinhard Zumkeller, Feb 08 2010

Examples

			a(15) = a(3*5) = a(3)*a(5) = 2*5 = 10;
a(16) = a(2^4) = a(2)^4 = 3^4 = 81;
a(17) = 17;
a(18) = a(2*3^2) = a(2)*a(3^2) = 3*a(3)^2 = 3*2^2 = 12.
		

Crossrefs

Programs

  • Haskell
    a064614 1 = 1
    a064614 n = product $ map f $ a027746_row n where
       f 2 = 3; f 3 = 2; f p = p
    -- Reinhard Zumkeller, Apr 09 2012, Jan 03 2011
    
  • Mathematica
    a[n_] := Times @@ Power @@@ (FactorInteger[n] /. {2, e2_} -> {0, e2} /. {3, e3_} -> {2, e3} /. {0, e2_} -> {3, e2}); Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Nov 20 2012 *)
    a[n_] := n * Times @@ ({3/2, 2/3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n)=my(x=valuation(n, 2)-valuation(n, 3)); n*2^-x*3^x \\ Charles R Greathouse IV, Jun 28 2015
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    def A064614(n):
        return reduce(mul,((5-p if 2<=p<=3 else p)**e for p,e in factorint(n).items())) if n > 1 else n
    # Chai Wah Wu, Dec 27 2014
    

Formula

a(n) = A065330(n) * (2 ^ A007949(n)) * (3 ^ A007814(n)). - Reinhard Zumkeller, Jan 03 2011
Completely multiplicative with a(2) = 3, a(3) = 2, and a(p) = p for primes p > 3. - Charles R Greathouse IV, Jun 28 2015
Sum_{k=1..n} a(k) ~ (6/7) * n^2. - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(s-1)*((2^s-2)*(3^s-3))/((2^s-3)*(3^s-2)). - Amiram Eldar, Dec 30 2022
Showing 1-10 of 31 results. Next