cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A071520 Number of 5-smooth numbers (A051037) <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 5-smooth number is a number of the form 2^x*3^y*5^z (x,y,z) >= 0.

Crossrefs

Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), this sequence (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<6,1,0],{n,80}]] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=4,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=-sum(k=1,n,moebius(2*3*5*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • Python
    from sympy import integer_log
    def A071520(n):
        c = 0
        for i in range(integer_log(n,5)[0]+1):
            for j in range(integer_log(m:=n//5**i,3)[0]+1):
                c += (m//3**j).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) = Card{ k | A051037(k) <= n }.
Asymptotically : let a = 1/(6*log(2)*log(3)*log(5)) and b = sqrt(30) then a(n) = a*log(b*n)^3 + O(log(n)).
a(n) = -Sum_{k=1,n} mu(30*k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{i=0..floor(log_5(n))} Sum_{j=0..floor(log_3(n/5^i))} floor(log_2(2*n/(5^i*3^j))). - Ridouane Oudra, Jul 17 2020

Extensions

Title corrected by Rainer Rosenthal, Aug 30 2020

A080686 Number of 19-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 48, 49, 49, 49, 50, 51, 52, 53, 53, 54, 54, 55, 55, 56
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 19. Input pn=19 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080682.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), this sequence (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 19], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
    
  • Python
    from sympy import integer_log, prevprime
    def A080686(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,19) # Chai Wah Wu, Sep 17 2024

A071523 Number of 11-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 37, 38, 38, 38, 38, 39, 39, 39, 40, 41, 41, 42, 42, 42, 42, 43, 43, 44
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

An 11-smooth number is a number of the form 2^x*3^y*5^z*7^u*11^v (x,y,z,u,v) >= 0.

Crossrefs

Cf. A051038.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), this sequence (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<=11,1,0],{n,120}]] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=sum(k=1,n,(k<4) || 13>vecmax(factor(k)~[1,]))

Formula

a(n) = Card{ k | A051038(k) <= n }.

A080685 Number of 17-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 45, 45, 46, 46, 46, 47, 48, 49, 50, 50, 51, 51, 52, 52, 53
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 17. Input pn=17 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080681.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), this sequence (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 17], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }

A085630 Number of n-digit 7-smooth numbers (A002473).

Original entry on oeis.org

0, 9, 36, 95, 197, 356, 579, 882, 1272, 1767, 2381, 3113, 3984, 5002, 6187, 7545, 9081, 10815, 12759, 14927, 17323, 19960, 22853, 26015, 29458, 33188, 37222, 41568, 46245, 51254, 56618, 62338, 68437, 74917, 81793, 89083, 96786, 104926, 113511
Offset: 0

Views

Author

Jason Earls and Amarnath Murthy, Jul 10 2003

Keywords

Crossrefs

Programs

  • PARI
    \\ Here b(n) is A071604.
    b(m)={sum(i=0, logint(m,7), my(p=m\7^i); sum(j=0, logint(p,5), my(q=p\5^j); sum(k=0, logint(q,3), logint(q\3^k,2)+1 )))}
    a(n)={if(n>0, b(10^n-1))-if(n>1, b(10^(n-1)-1))} \\ Andrew Howroyd, Sep 20 2024

Formula

From Andrew Howroyd, Sep 20 2024: (Start)
a(n) = A106600(n) - A106600(n-1) for n > 0.
a(n) = A071604(10^n-1) - A071604(10^(n-1)-1) for n > 1. (End)

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 18 2004
Name changed by Andrew Howroyd, Sep 20 2024

A096300 Number of positive integers <= n with no prime factor > log(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Ralf Stephan, Aug 03 2004

Keywords

Programs

  • Mathematica
    a[n_] := Select[Range[n], FactorInteger[#][[-1, 1]] <= Log[n]&] // Length;
    a[1] = a[2] = 1;
    a /@ Range[75] (* Jean-François Alcover, May 17 2020 *)
  • PARI
    a(n)=local(s, t); s=0; for(k=1, n, f=factor(k); t=0; for(l=1, matsize(f)[1], if(f[l, 1]>log(n), t=1; break)); s=s+!t); s

Formula

From Charlie Neder, Feb 08 2019: (Start)
a(n) = A000012(n) for 0 < n <= floor(e^2) = 7,
A070939(n) for 7 < n <= floor(e^3) = 20,
A071521(n) for 20 < n <= floor(e^5) = 148,
A071520(n) for 148 < n <= floor(e^7) = 1096,
A071604(n) for 1096 < n <= floor(e^11) = 59874,
and so on. (End)
Showing 1-6 of 6 results.