cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A071604 a(n) is the number of 7-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 17, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 30, 31, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 38
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 7-smooth number is a number of the form 2^x*3^y*5^z*7^u, (x,y,z,u) >= 0.
In other words, a 7-smooth number is a number with no prime factor greater than 7. - Peter Munn, Nov 20 2021

Examples

			a(11) = 10 as there are 10 7-smooth numbers <= 11. Namely 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - _David A. Corneth_, Apr 19 2021
		

Crossrefs

Partial sums of A086299.
Column 7 of A080786.
Equivalent sequences with other limits on greatest prime factor: A070939 (2), A071521 (3), A071520 (5), A071523 (11), A080684 (13), A080685 (17), A080686 (19), A096300 (log n).

Programs

  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=5,n,if(k%prime(i),0,1)),0,1)),","))
    
  • Python
    from sympy import integer_log
    def A071604(n):
        c = 0
        for i in range(integer_log(n,7)[0]+1):
            i7 = 7**i
            m = n//i7
            for j in range(integer_log(m,5)[0]+1):
                j5 = 5**j
                r = m//j5
                for k in range(integer_log(r,3)[0]+1):
                    c += (r//3**k).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) = Card{ k | A002473 (k) <= n }.

Extensions

Name corrected by David A. Corneth, Apr 19 2021

A080686 Number of 19-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 48, 49, 49, 49, 50, 51, 52, 53, 53, 54, 54, 55, 55, 56
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 19. Input pn=19 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080682.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), this sequence (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 19], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
    
  • Python
    from sympy import integer_log, prevprime
    def A080686(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,19) # Chai Wah Wu, Sep 17 2024

A080684 Number of 13-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 35, 36, 37, 38, 38, 39, 39, 40, 41, 42, 42, 42, 42, 43, 43, 43, 44, 45, 46, 47, 47, 47, 47, 48, 48, 49
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 13. Input pn=13 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<14,1,0],{n,80}]] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }
    
  • Python
    from sympy import prevprime, integer_log
    def A080684(n):
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,13) # Chai Wah Wu, Oct 22 2024

A106598 Number of positive integers <= 10^n that are divisible by no prime exceeding 5.

Original entry on oeis.org

1, 9, 34, 86, 175, 313, 507, 768, 1105, 1530, 2053, 2683, 3429, 4301, 5310, 6466, 7780, 9259, 10917, 12761, 14801, 17048, 19511, 22201, 25127, 28300, 31730, 35425, 39397, 43654, 48207, 53066, 58243, 63746, 69584, 75769, 82310, 89216, 96499, 104168
Offset: 0

Views

Author

Robert G. Wilson v, May 27 2005

Keywords

Crossrefs

Row 3 of A253635.

Programs

  • Mathematica
    n = 40; t = Select[ Flatten[ Table[ 5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, n*Log[2, 10]}, {b, 0, n*Log[3, 10]}]], # <= 10^n &], {c, 0, n*Log[5, 10]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 40}]

A071523 Number of 11-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 37, 38, 38, 38, 38, 39, 39, 39, 40, 41, 41, 42, 42, 42, 42, 43, 43, 44
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

An 11-smooth number is a number of the form 2^x*3^y*5^z*7^u*11^v (x,y,z,u,v) >= 0.

Crossrefs

Cf. A051038.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), this sequence (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<=11,1,0],{n,120}]] (* Harvey P. Dale, Sep 02 2024 *)
  • PARI
    a(n)=sum(k=1,n,(k<4) || 13>vecmax(factor(k)~[1,]))

Formula

a(n) = Card{ k | A051038(k) <= n }.

A080685 Number of 17-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 45, 45, 46, 46, 46, 47, 48, 49, 50, 50, 51, 51, 52, 52, 53
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Range = primes 2 to 17. Input pn=17 in script below. Code below is much faster than the code for cross-reference. For input of n=200 13 times as fast and many times faster for larger input of n.

Crossrefs

Cf. A080681.
Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), A071520 (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), this sequence (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[Boole[Max[FactorInteger[n][[;; , 1]]] <= 17], {n, 100}]] (* Amiram Eldar, Apr 29 2025 *)
  • PARI
    smoothn(n,pn) = { for(m=1,n, pr=1; forprime(p=2,pn, pr*=p; ); ct=1; for(x=1,m, f=0; forprime(y=nextprime(pn+1),floor(x), if(x%y == 0,f=1; break) ); if(gcd(x,pr)<>1,if(f==0,ct+=1; )) ); print1(ct","); ) }

A080786 Triangle T(n,k) = number of k-smooth numbers <= n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 4, 4, 5, 1, 3, 5, 5, 6, 6, 1, 3, 5, 5, 6, 6, 7, 1, 4, 6, 6, 7, 7, 8, 8, 1, 4, 7, 7, 8, 8, 9, 9, 9, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 11, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 13, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 12 2003

Keywords

Comments

T(n,n-1) = A014684(n) for n>1;
T(n,2) = A029837(n) for n>1; T(n,3) = A071521(n) for n>2; T(n,5) = A071520(n) for n>4.
A036234(n) = number of distinct terms in n-th row. - Reinhard Zumkeller, Sep 17 2013

Examples

			Triangle begins:
.................. 1
................ 1...2
.............. 1...2...3
............ 1...3...4...4
.......... 1...3...4...4...5
........ 1...3...5...5...6...6
...... 1...3...5...5...6...6...7
.... 1...4...6...6...7...7...8...8
.. 1...4...7...7...8...8...9...9...9.
		

Crossrefs

Programs

  • Haskell
    a080786 n k = a080786_tabl !! (n-1) !! (k-1)
    a080786_row n = a080786_tabl !! (n-1)
    a080786_tabl = map reverse $ iterate f [1] where
       f xs@(x:_) = (x + 1) :
                    (zipWith (+) xs (map (fromEnum . (lpf <=)) [x, x-1 ..]))
            where lpf = fromInteger $ a006530 $ fromIntegral (x + 1)
    -- Reinhard Zumkeller, Sep 17 2013
    
  • Maple
    A080786 := proc(x,y)
        local a,n ;
        a := 0 ;
        for n from 1 to x do
            if A006530(n) <= y then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 31 2013
  • Mathematica
    P[n_] := FactorInteger[n][[-1, 1]]; P[1]=1; T[n_, k_] := (For[j=0; m=1, m <= n, m++, If[P[m] <= k, j++]]; j); Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2015 *)
  • Python
    from itertools import count, islice
    from sympy import prevprime, integer_log
    def A080786_T(n,k):
        if k==1: return 1
        def g(x,m): return x.bit_length() if m==2 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,prevprime(k+1))
    def A080786_gen(): # generator of terms
        return (A080786_T(n,k) for n in count(1) for k in range(1,n+1))
    A080786_list = list(islice(A080786_gen(),100)) # Chai Wah Wu, Oct 22 2024

A112751 Number of numbers of the form 3^i*5^j that are less than or equal to n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(15*k)*Floor(n/k):k in [1..n]]: n in [1..97]]; // Marius A. Burtea, Jul 30 2019
  • Maple
    with(numtheory): seq(add(mobius(15*k)*floor(n/k), k=1..n), n=1..90); # Ridouane Oudra, Jul 29 2019
  • Mathematica
    Accumulate[Table[Boole[n == Times @@ ({3, 5}^IntegerExponent[n, {3, 5}])], {n, 1, 100}]] (* Amiram Eldar, May 04 2025 *)

Formula

From Ridouane Oudra, Jul 29 2019: (Start)
a(n) = Card_{ k | A003593(k) <= n }.
a(n) = Sum_{k=1..n} mu(15*k)*floor(n/k), where mu is the Möbius function (A008683).
a(n) = Sum_{k=1..n} (floor(15^k/k)-floor((15^k-1)/k)). (End)
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_5(n))} (floor(log_3(n/5^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_5(n/3^i)) + 1). (End)

A096300 Number of positive integers <= n with no prime factor > log(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Ralf Stephan, Aug 03 2004

Keywords

Programs

  • Mathematica
    a[n_] := Select[Range[n], FactorInteger[#][[-1, 1]] <= Log[n]&] // Length;
    a[1] = a[2] = 1;
    a /@ Range[75] (* Jean-François Alcover, May 17 2020 *)
  • PARI
    a(n)=local(s, t); s=0; for(k=1, n, f=factor(k); t=0; for(l=1, matsize(f)[1], if(f[l, 1]>log(n), t=1; break)); s=s+!t); s

Formula

From Charlie Neder, Feb 08 2019: (Start)
a(n) = A000012(n) for 0 < n <= floor(e^2) = 7,
A070939(n) for 7 < n <= floor(e^3) = 20,
A071521(n) for 20 < n <= floor(e^5) = 148,
A071520(n) for 148 < n <= floor(e^7) = 1096,
A071604(n) for 1096 < n <= floor(e^11) = 59874,
and so on. (End)

A337881 30*a(n) - 1 is the least prime of the form 2^r*3^s*5^t - 1, r > 0, s > 0, t > 0, r + s + t = n.

Original entry on oeis.org

1, 2, 6, 8, 16, 48, 96, 432, 384, 512, 2304, 4608, 23040, 8192, 24576, 49152, 65536, 294912, 655360, 1310720, 2621440, 10616832, 6291456, 28311552, 62914560, 75497472, 251658240, 838860800, 402653184, 805306368, 1073741824, 12079595520, 14495514624, 65229815808
Offset: 3

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Oct 12 2020

Keywords

Crossrefs

Showing 1-10 of 11 results. Next