cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003593 Numbers of the form 3^i*5^j with i, j >= 0.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, 135, 225, 243, 375, 405, 625, 675, 729, 1125, 1215, 1875, 2025, 2187, 3125, 3375, 3645, 5625, 6075, 6561, 9375, 10125, 10935, 15625, 16875, 18225, 19683, 28125, 30375, 32805, 46875, 50625, 54675, 59049
Offset: 1

Views

Author

Keywords

Comments

Odd 5-smooth numbers (A051037). - Reinhard Zumkeller, Sep 18 2005

Crossrefs

Cf. A033849, A112751-A112756, A143202, A022337 (list of j), A022336(list of i).
Cf. A264997 (partitions into), see also A264998. Cf. A108347 (odd 7-smooth).

Programs

  • GAP
    Filtered([1..60000],n->PowerMod(15,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003593 n = a003593_list !! (n-1)
    a003593_list = f (singleton 1) where
       f s = m : f (insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n: n in [1..60000] | PrimeDivisors(n) subset [3,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    isA003593 := proc(n)
        if n = 1 then
            true;
        else
            return (numtheory[factorset](n) minus {3, 5} = {} );
        end if;
    end proc:
    A003593 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA003593(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003593(n),n=1..30) ; # R. J. Mathar, Aug 04 2016
  • Mathematica
    fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* Bruno Berselli, Sep 24 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(5),N=5^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • PARI
    is(n)=n==3^valuation(n,3)*5^valuation(n,5) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Python
    from sympy import integer_log
    def A003593(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - Benoit Cloitre, Jan 22 2002
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - Amiram Eldar, Sep 22 2020

A071520 Number of 5-smooth numbers (A051037) <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 5-smooth number is a number of the form 2^x*3^y*5^z (x,y,z) >= 0.

Crossrefs

Number of p-smooth numbers <= n: A070939 (p=2), A071521 (p=3), this sequence (p=5), A071604 (p=7), A071523 (p=11), A080684 (p=13), A080685 (p=17), A080686 (p=19).

Programs

  • Mathematica
    Accumulate[Table[If[Max[FactorInteger[n][[;;,1]]]<6,1,0],{n,80}]] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=4,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=-sum(k=1,n,moebius(2*3*5*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • Python
    from sympy import integer_log
    def A071520(n):
        c = 0
        for i in range(integer_log(n,5)[0]+1):
            for j in range(integer_log(m:=n//5**i,3)[0]+1):
                c += (m//3**j).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) = Card{ k | A051037(k) <= n }.
Asymptotically : let a = 1/(6*log(2)*log(3)*log(5)) and b = sqrt(30) then a(n) = a*log(b*n)^3 + O(log(n)).
a(n) = -Sum_{k=1,n} mu(30*k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{i=0..floor(log_5(n))} Sum_{j=0..floor(log_3(n/5^i))} floor(log_2(2*n/(5^i*3^j))). - Ridouane Oudra, Jul 17 2020

Extensions

Title corrected by Rainer Rosenthal, Aug 30 2020
Showing 1-2 of 2 results.