cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A194067 Natural interspersion of A087483; a rectangular array, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 6, 7, 11, 12, 9, 10, 15, 16, 21, 13, 14, 19, 20, 26, 27, 17, 18, 24, 25, 32, 33, 40, 22, 23, 30, 31, 38, 39, 47, 48, 28, 29, 36, 37, 45, 46, 55, 56, 65, 34, 35, 43, 44, 53, 54, 63, 64, 74, 75, 41, 42, 51, 52, 61, 62, 72, 73, 84, 85, 96, 49, 50, 59
Offset: 1

Views

Author

Clark Kimberling, Aug 14 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194067 is a permutation of the positive integers; its inverse is A194068.

Examples

			Northwest corner:
1...2...4...6...9...13
3...5...7...10..14..18
8...11..15..19..24..30
12..16..20..25..31..37
21..26..32..38..45..53
		

Crossrefs

Programs

  • Mathematica
    z = 70;
    c[k_] := 1 + Floor[(1/3) k^2];
    c = Table[c[k], {k, 1, z}]  (* A087483 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
    f = Table[f[n], {n, 1, 300}]   (* A194066 *)
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194067 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 90}]] (* A194068 *)

A194066 Natural fractal sequence of A087483.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1
Offset: 1

Views

Author

Clark Kimberling, Aug 14 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion.

Crossrefs

Programs

  • Mathematica
    z = 70;
    c[k_] := 1 + Floor[(1/3) k^2];
    c = Table[c[k], {k, 1, z}]  (* A087483 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
    f = Table[f[n], {n, 1, 300}]   (* A194066 *)
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194067 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 90}]] (* A194068 *)

A087465 Rank array R of 3/2 read by antidiagonals; this array is the dispersion of the complement of the sequence given by r(n) = r(n-1) + 1 + floor(3n/2) for n>=1, with r(0) = 1; that is, A077043(n+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 8, 10, 12, 9, 11, 14, 16, 19, 13, 15, 18, 21, 24, 27, 17, 20, 23, 26, 30, 33, 37, 22, 25, 29, 32, 36, 40, 44, 48, 28, 31, 35, 39, 43, 47, 52, 56, 61, 34, 38, 42, 46, 51, 55, 60, 65, 70, 75, 41, 45, 50, 54, 59, 64, 69, 74, 80, 85, 91, 49, 53, 58, 63, 68, 73
Offset: 0

Views

Author

Clark Kimberling, Sep 09 2003

Keywords

Comments

The sequence is a permutation of the positive integers and the array is a transposable dispersion.
Let T(n,k) be the rectangular version of the array at A036561, with northwest corner as shown here:
1 2 4 8 16 32
3 6 12 24 48 96
9 18 36 72 144 288
27 54 108 216 432 864
Then R(n,k) is the rank of T(n,k) when all the numbers in {T(n,k)} are jointly ranked. - Clark Kimberling, Jan 25 2018

Examples

			Northwest corner of R:
   1    2    4    6    9   13   17   22
   3    5    8   11   15   20   25   31
   7   10   14   18   23   29   35   42
  12   16   21   26   32   39   46   54
  19   24   30   36   43   51   59   68
  27   33   40   47   55   64   73   83
  37   44   52   60   69   79   89  100
Let t=3/2; then R(i,j) = rank of (j,i) when all nonnegative integer pairs (a,b) are ranked by the relation << defined as follows: (a,b) << (c,d) if a + b*t < c + d*t, and also (a,b) << (c,d) if a + b*t = c + d*t and b < d.  Thus R(2,1) = 10 is the rank of (1,2) in the list (0,0) << (1,0) << (0,1) << (2,0) << (1,1) << (3,0) << (0,2) << (2,1) << (4,0) << (1,2).
		

Crossrefs

Cf. A087466, A087468, A087483, A007780 (row 1), A077043 (column 1).

Programs

  • Mathematica
    r = 20; r1 = 12;(*r=# rows of T,r1=# rows to show*);
    c = 20; c1 = 12;(*c=# cols of T,c1=# cols to show*);
    s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[3 n/2]; u = Table[s[n], {n, 0, 100}]
    v = Complement[Range[Max[u]], u]; f[n_] := v[[n]]; Table[f[n], {n, 1, 30}]
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,   Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; w[i_, j_] := rows[[i, j]];
    TableForm[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]]   (* A087465 array *)
    Flatten[Table[w[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A087465 sequence *)
    TableForm[Table[w[i, 1] + w[1, j] + (i - 1)*(j - 1) - 1, {i, 1, 10}, {j, 1, 10}]] (* A087465 array, by formula *)

Formula

R(i,j) = R(i,0) + R(0,j) + i*j - 1, for i>=1, j>=1.

Extensions

Updated by Clark Kimberling, Sep 23 2014

A281333 a(n) = 1 + floor(n/2) + floor(n^2/3).

Original entry on oeis.org

1, 1, 3, 5, 8, 11, 16, 20, 26, 32, 39, 46, 55, 63, 73, 83, 94, 105, 118, 130, 144, 158, 173, 188, 205, 221, 239, 257, 276, 295, 316, 336, 358, 380, 403, 426, 451, 475, 501, 527, 554, 581, 610, 638, 668, 698, 729, 760, 793, 825, 859, 893, 928, 963, 1000, 1036, 1074, 1112, 1151, 1190
Offset: 0

Views

Author

Bruno Berselli, Jan 20 2017

Keywords

Crossrefs

Subsequences: A033577, A244805 (numbers of the form 1 + k/2 + k^2/3), A212978 (second bisection).
Cf. A236771: n + floor(n/2) + floor(n^2/3).
Cf. A008619: 1 + floor(n/2); A087483: 1 + floor(n^2/3).

Programs

  • Magma
    [1 + n div 2 + n^2 div 3: n in [0..60]];
  • Maple
    A281333:=n->1 + floor(n/2) + floor(n^2/3): seq(A281333(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Table[1 + Floor[n/2] + Floor[n^2/3], {n, 0, 60}]
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,3,5,8,11},80] (* Harvey P. Dale, Sep 29 2024 *)
  • Maxima
    makelist(1+floor(n/2)+floor(n^2/3), n, 0, 60);
    
  • PARI
    vector(60, n, n--; 1+floor(n/2)+floor(n^2/3))
    
  • Python
    [1+int(n/2)+int(n**2/3) for n in range(60)]
    
  • Sage
    [1+floor(n/2)+floor(n^2/3) for n in range(60)]
    

Formula

G.f.: (1 + x^2 + x^3 + x^4)/((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = 1 + floor(n/2 + n^2/3).
a(n) = (12*n^2 + 18*n + 4*(-1)^(2*n/3) + 4*(-1)^(-2*n/3) + 9*(-1)^n + 19)/36.
a(n) - n = a(-n).
a(6*k+r) = 12*k^2 + (4*r+3)*k + a(r), where 0 <= r <= 5. Particular cases:
a(6*k) = A244805(k+1), a(6*k+1) = A033577(k).
a(n+2) - a(n) = A004773(n+2).
a(n+3) - a(n) = A014601(n+2).
a(n+4) - a(n) = A047480(n+3).
a(n) - a(-n+3) = 2*A001651(n-1).
a(n) + a(-n+3) = 2*A097922(n-1).
a(n) = 1 + A004526(n) + A000212(n) = A008619(n) + A000212(n). - Omar E. Pol, Dec 23 2020

A192735 Left edge of the triangle in A033291.

Original entry on oeis.org

1, 2, 6, 16, 30, 54, 91, 136, 198, 280, 374, 492, 637, 798, 990, 1216, 1462, 1746, 2071, 2420, 2814, 3256, 3726, 4248, 4825, 5434, 6102, 6832, 7598, 8430, 9331, 10272, 11286, 12376, 13510, 14724, 16021, 17366, 18798, 20320, 21894, 23562, 25327, 27148, 29070
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2011

Keywords

Comments

a(n) = A087483(n-2) * n.

Crossrefs

Cf. A192736.

Programs

Formula

G.f.: x*(x^2+1)*(2*x^4+4*x^3+2*x^2+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 31 2013

A053799 Number of basis partitions of n+9 with Durfee square size 3.

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 26, 34, 44, 56, 68, 82, 98, 114, 132, 152, 172, 194, 218, 242, 268, 296, 324, 354, 386, 418, 452, 488, 524, 562, 602, 642, 684, 728, 772, 818, 866, 914, 964, 1016, 1068, 1122, 1178, 1234, 1292, 1352, 1412, 1474, 1538, 1602, 1668, 1736
Offset: 0

Views

Author

James Sellers, Mar 27 2000

Keywords

Comments

a(n) is the number of solutions in integers (x,y,z) of |x| + 2|y| + 3|z| = |n|. - Michael Somos, Jul 17 2018

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 18*x^5 + 26*x^6 + 34*x^7 + ... - _Michael Somos_, Jul 17 2018
		

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,2,4,8,12,18},60] (* Harvey P. Dale, Aug 25 2015 *)
    a[ n_] := 2 Quotient[ n^2, 3] + 2 - Boole[n == 0]; (* Michael Somos, Jul 17 2018 *)
    a[ n_] := SeriesCoefficient[ (1 + x^2) (1 + x^3) / ((1 - x)^3 (1 + x + x^2)), {x, 0, Abs@n}]; (* Michael Somos, Jul 17 2018 *)
    a[ n_] := Length @ FindInstance[ Abs[x] + 2 Abs[y] + 3 Abs[z] == Abs[n], {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 17 2018 *)
  • PARI
    {a(n) = n^2 \ 3 * 2 + 2 - (n==0)}; /* Michael Somos, Jul 17 2018 */

Formula

For n>0, a(n) = 2*(1+floor(n^2/3)) = 2*A087483(n-1) = 2*(1+A000212(n)). - Max Alekseyev, Dec 05 2013
G.f.: (1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) = (1+x)*(1+x^2)*(1-x+x^2)/((1-x)^3*(1+x+x^2)).
a(n) = A000982(n)+A008749(n). - John Mason, Jan 08 2015
From Michael Somos, Jul 17 2018: (Start)
Euler transform of length 6 sequence [2, 1, 2, -1, 0, -1].
a(n+1) - 2*a(n) + a(n-1) = 1 + (-1)^n if |n|>1.
a(n) = a(-n) for all n in Z. (End)
Showing 1-6 of 6 results.