A384295 a(n) is the number of integer sextuples (a,b,c,d,e,f) satisfying a system of linear inequalities and congruences specified in the comments.
1, 42, 684, 4388, 17976, 56076, 145630, 331410, 682596, 1300338, 2326422, 3952896, 6432777, 10091748, 15340947, 22690710, 32765418, 46319334, 64253491, 87633588, 117708960, 155932526, 203981823, 263781030, 337524061, 427698636, 537111456, 668914338, 826631436
Offset: 0
Keywords
Examples
For n=0, the sole solution is (a,b,c,d,e,f) = (0,0,0,0,0,0) so a(0) = 1. For n=1, the a(1)=42 solutions are (-3, 3, -1, 0, 0, 0), (-2, 0, 2, -1, 0, 0), (-2, 1, -1, 2, -1, 0), (-2, 1, 0, -1, 2, -1), (-2, 1, 0, 0, -1, 1), (-1, -2, 2, 1, -1, 0), (-1, -1, 0, 1, 1, -1), (-1, -1, 1, -1, 1, 0), (-1, -1, 1, 0, -2, 2), (-1, 0, -2, 2, 0, 0), (-1, 0, -1, 0, 0, 1), (-1, 0, 0, -3, 3, 0), (-1, 0, 1, 1, -2, 0), (-1, 0, 2, -2, 1, -1), (-1, 1, -1, 1, 0, -1), (-1, 1, 0, -1, 0, 0), (-1, 2, -2, 0, -1, 1), (0, -3, 0, 3, 0, -1), (0, -2, -1, 1, 2, -1), (0, -2, 0, 0, -1, 2), (0, -1, -2, 0, 1, 1), (0, -1, -1, -2, 1, 2), (0, -1, 0, 0, 2, -2), (0, -1, 0, 1, -1, 0), (0, -1, 1, -1, -1, 1), (0, -1, 3, 0, -3, 0), (0, 0, -3, -1, 0, 3), (0, 0, -1, -1, 1, 0), (0, 0, 1, 0, -1, -1), (0, 1, 0, -2, 1, -1), (0, 2, 0, 0, -2, -1), (1, -2, -1, 1, 0, 0), (1, -1, -1, 2, 0, -2), (1, -1, 0, 0, 0, -1), (1, 0, -1, -1, -1, 1), (1, 0, 1, -1, 0, -2), (1, 1, -1, 0, -1, -1), (1, 2, 0, -1, -1, -2), (2, -1, -2, -1, 0, 1), (2, 0, -1, -2, 0, 0), (2, 0, 1, -1, -2, -1), (3, 0, 0, 0, -1, -3).
Links
- Ray Chandler, Table of n, a(n) for n = 0..30
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, arXiv:2403.15967 [math.NT], 2024.
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024).
Programs
-
Mathematica
a[n_]:=Sum[Boole[Mod[12*n+25*b-11*t1+9*t2-7*t3+2*t4-6*t5,19]==0],{b,0,Floor[7*n/6]},{t1,0,Floor[7*n-6*b]},{t2,0,Floor[7*n-6*b-t1]},{t3,0,Floor[7*n-6*b-t1-t2]},{t4,0,Floor[7*n-6*b-t1-t2-t3]},{t5,0,Floor[7*n-6*b-t1-t2-t3-t4]}]; Table[a[j],{j,0,20}]
Extensions
More terms from Jinyuan Wang, May 26 2025
a(29) and a(30) from Ray Chandler, Jun 04 2025
Comments