A370349 a(n) is the number of integer triples (x,y,z) satisfying a system of linear inequalities and congruences specified in the comments.
1, 6, 18, 39, 72, 120, 185, 270, 378, 511, 672, 864, 1089, 1350, 1650, 1991, 2376, 2808, 3289, 3822, 4410, 5055, 5760, 6528, 7361, 8262, 9234, 10279, 11400, 12600, 13881, 15246, 16698, 18239, 19872, 21600, 23425, 25350, 27378, 29511, 31752, 34104, 36569, 39150, 41850, 44671, 47616, 50688, 53889, 57222
Offset: 0
Examples
For n=0, the sole solution is (x,y,z) = (0,0,0) so a(0) = 1. For n=1, the a(1)=6 solutions are (-1, -3, 3), (-2, 0, 1), (-3, 3, -1), (1, -2, 0), (0, 1, -2), (3, -1, -3).
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, arXiv:2403.15967 [math.NT], 2024.
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
Programs
-
Mathematica
n = Range[0, 500, 2]; Floor[(10 + 24*n + 18*n^2 + 4*n^3)/9]
-
Python
def A370349(n): return ((n<<2)+10)*(n+1)**2//9 # Chai Wah Wu, Mar 11 2024
Formula
a(n) = floor((10 + 24*n + 18*n^2 + 4*n^3)/9).
Comments