cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A006325 4-dimensional analog of centered polygonal numbers.

Original entry on oeis.org

0, 0, 1, 7, 26, 70, 155, 301, 532, 876, 1365, 2035, 2926, 4082, 5551, 7385, 9640, 12376, 15657, 19551, 24130, 29470, 35651, 42757, 50876, 60100, 70525, 82251, 95382, 110026, 126295, 144305, 164176, 186032, 210001, 236215, 264810, 295926
Offset: 0

Views

Author

Albert Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
For n>0, a(n+1) is the n-th antidiagonal sum of A213751. - Clark Kimberling, Jun 20 2012
This sequence is the case m=n-1, k=n+3 of b(m,k) = m*(m+1)*((k-2)*m-(k-5))/6, which is the m-th k-gonal pyramidal number. - Luciano Ancora, Apr 11 2015
Starting (1, 7, 26, ...), this is the binomial transform of (1, 6, 13, 12, 4, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
Also starting (1, 7, 26, ...), this appears to be the number of magic labelings of the cycle-of-loops graph LOOP X C_4 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. - David J. Seal, Sep 13 2017
The conjecture by David J. Seal is true and easily proved using MacMahon's Omega operators via the "Omega" package for Mathematica authored by Axel Riese (obtaining (up to an offset) the generating function listed in the formula section below). See the second Mathematica program in which the edges of LOOP X C_4 are indexed as in the example below. The Omega package can be downloaded from the link provided in the article by G. E. Andrews et al. - L. Edson Jeffery, Oct 15 2017

Examples

			A representation of the LOOP X C_4 graph, with edges and loops indexed as shown, as used in the second Mathematica program below:
.             3         1
.              O_______O
.              |   2   |
.              |4     0|
.              |_______|
.              O   6   O
.             5         7
		

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A000027, A000217, A019298, A244497, A244879, A244873, A244880, A293310, A293309 (magic labelings of LOOP X C_k, for k = 1..3,5..10).

Programs

  • Magma
    [n*(n-1)*(n^2-n+1)/6: n in [0..40]]; // Vincenzo Librandi, May 22 2011
    
  • Mathematica
    Table[n*(n-1)*(n^2-n+1)/6, {n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
    << Omega.m; n = 4; cond = {}; Do[AppendTo[cond, Sum[a[Mod[2*k - j, 2*n]], {j, 0, 2}] == a[2*n]], {k, 0, n - 1}]; f = OEqSum[Product[x[i]^a[i], {i, 0, 2*n}], cond, u][[1]]; Do[f = OEqR[f, Subscript[u, k]], {k, n}];
    (* Generating function: *)
    f = Factor[f /. {x[2*n] -> x} /. {x[_] -> 1}]
    (* This sequence (with initial zeros dropped): *)
    CoefficientList[Series[f, {x, 0, 35}], x] (* L. Edson Jeffery, Oct 15 2017 *)
  • PARI
    a(n)=n*(n-1)*(n^2-n+1)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = n*(n-1)*(n^2-n+1)/6.
a(n) = ((n^5 - (n-1)^5) - (n^1 - (n-1)^1))/30 = (n^5 - (n-1)^5 - 1)/30. - Xavier Acloque, Jan 25 2003
The partial sums of the octahedral numbers: a(n+1) = Sum_{i=0..n} A005900(i). - Jonathan Vos Post, Mar 14 2006
G.f.: -x^2*(x+1)^2/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013 [Which is just rephrasing the partial sum formula with the Murthy formula in A005900. - R. J. Mathar, Jun 14 2014]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Yosu Yurramendi, Sep 03 2013
From Daniel Poveda Parrilla, Sep 09 2017: (Start)
a(n) = A169938(n-1)/6.
a(n+1) = A288486(n)/24. (End)
Sum_{n>=2} 1/a(n) = 12 - 2 * sqrt(3) * tanh(sqrt(3)*Pi/2). - Amiram Eldar, Jun 28 2020
E.g.f.: exp(x)*x^2*(3 + 4*x + x^2)/6. - Stefano Spezia, Dec 12 2021

A019298 Number of balls in pyramid with base either a regular hexagon or a hexagon with alternate sides differing by 1 (balls in hexagonal pyramid of height n taken from hexagonal close-packing).

Original entry on oeis.org

0, 1, 4, 11, 23, 42, 69, 106, 154, 215, 290, 381, 489, 616, 763, 932, 1124, 1341, 1584, 1855, 2155, 2486, 2849, 3246, 3678, 4147, 4654, 5201, 5789, 6420, 7095, 7816, 8584, 9401, 10268, 11187, 12159, 13186
Offset: 0

Views

Author

Eric E Blom (eblom(AT)REM.re.uokhsc.edu)

Keywords

Comments

Alternately add and subtract successively longer sets of integers: 0; 1 = 0+1; -4 = 1-2-3; 11 = -4+4+5+6; -23 = 11-7-8-9-10; 42 = -23+11+12+13+14+15; -69 = 42-16-17-18-19-20-21; ... then take absolute values. - Walter Carlini, Aug 28 2003
Number of 3 X 3 symmetric matrices with nonnegative integer entries, such that every row (and column) sum equals n-1.
Equals Sum_{0..n} of "three-quarter squares" sequence (A077043). - Philipp M. Buluschek (kitschen(AT)romandie.com), Aug 12 2007
a(n) is the sum of the n-th row in A220075, n > 0. - Reinhard Zumkeller, Dec 03 2012
Sum of all the smallest parts in the partitions of 3n into three parts (see example). - Wesley Ivan Hurt, Jan 23 2014
For n > 0, a(n) is the number of (nonnegative integer) magic labelings of the prism graph Y_3 with magic sum n - 1. - L. Edson Jeffery, Sep 09 2017
Or number of magic labelings of LOOP X C_3 with magic sum n - 1, where LOOP is the 1-vertex, 1-loop-edge graph, as Y_k = I X C_k and LOOP X C_k have the same numbers of magic labelings when k is odd. - David J. Seal, Sep 13 2017
a(n) is the number of triples of integers in [1,n]^3 such that each pair has sum larger than n. - Bob Zwetsloot, Jul 23 2020

Examples

			Add last column for a(n) (n > 0).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    1           4           11          23          42      ..  a(n)
		

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Prop. 4.6.21, p. 235, G_3(lambda).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.14(a), p. 452.

Crossrefs

Cf. A053493, A077043 (first differences), A002717.
Cf. A061927, A244497, A292281, A244873, A289992 (# of magic labelings of prism graph Y_k = I X C_k, for k = 4,5,6,7,8, up to an offset).
Cf. A006325, A244879, A244880 (# of magic labelings of LOOP X C_k, for k = 4,6,8, up to an offset).

Programs

  • Magma
    [Floor((n^2+1)*(2*n+3)/8): n in [0..80]]; // Vincenzo Librandi, Jul 28 2013
    
  • Maple
    series(x*(x^2+x+1)/(x+1)/(x-1)^4,x,80);
  • Mathematica
    Table[ Ceiling[3*n^2/4], {n, 0, 37}] // Accumulate (* Jean-François Alcover, Dec 20 2012, after Philipp M. Buluschek's comment *)
    CoefficientList[Series[x (x^2 + x + 1) / ((x + 1) (x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 28 2013 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 11, 23}, 38] (* L. Edson Jeffery, Sep 09 2017 *)
  • PARI
    a(n)=(n^2+1)*(2*n+3)\8 \\ Charles R Greathouse IV, Apr 04 2013
    
  • Python
    def A019298(n): return n*(n*(2*n+3)+2)+3>>3 # Chai Wah Wu, Jun 07 2025

Formula

a(n) = floor((n^2+1)(2n+3)/8).
G.f.: x*(x^2+x+1)/((x+1)*(x-1)^4).
a(n) = floor((2n^3 + 3n^2 + 2n)/8); also nearest integer to ((n+1)^4 - n^4)/16.
a(n) = (4n^3 + 6n^2 + 4n+1 - (-1)^n)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Mar 06 2004
a(n) = Sum_{i=1..n} i^2 - floor(i^2/4) = Sum_{i=1..n} i * (2n - 2i + 1 - floor((n - i + 1)/2) ). - Wesley Ivan Hurt, Jan 23 2014
E.g.f.: (1/16)*(-exp(-x) + exp(x)*(1 + 14*x + 18*x^2 + 4*x^3)). - Stefano Spezia, Nov 29 2019
a(2*n) = (1/2)*( n*(n + 1)^3 - (n - 1)*n^3 ); a(2*n-1) = (1/2)*( (n + 1)*n^3 - n*(n - 1)^3 ) (note: replacing the exponent 3 with 2 throughout gives the sequence of generalized pentagonal numbers A001318). - Peter Bala, Aug 11 2021
a(2n-1) = A213772(n). - R. J. Mathar, Mar 02 2025
(n-2)*a(n) -3*a(n-1) -(n+1)*a(n-2) +2*n-1 =0. - R. J. Mathar, Mar 09 2025

Extensions

Error in n=8 term corrected May 15 1997

A244497 Number of magic labelings of the prism graph I X C_5 with magic sum n.

Original entry on oeis.org

1, 11, 57, 197, 533, 1223, 2494, 4654, 8105, 13355, 21031, 31891, 46837, 66927, 93388, 127628, 171249, 226059, 294085, 377585, 479061, 601271, 747242, 920282, 1123993, 1362283, 1639379, 1959839, 2328565, 2750815, 3232216, 3778776, 4396897, 5093387, 5875473, 6750813, 7727509, 8814119
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Comments

This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_5 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A292281, A244873, A289992 (analogs for prism graphs I X C_k, k = 3,4,6,7,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Maple
    A244497:=n->(3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192: seq(A244497(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    CoefficientList[Series[(1 + 6 x + 11 x^2 + 6 x^3 + x^4)/((1 - x)^6*(1 + x)), {x, 0, 37}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,11,57,197,533,1223,2494},40] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    Vec((1+6*x+11*x^2+6*x^3+x^4) / ((1-x)^6*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017

Formula

G.f.: (1 + 6*x + 11*x^2 + 6*x^3 + x^4) / ((1 - x)^6*(1 + x)).
From Colin Barker, Jan 13 2017: (Start)
a(n) = (3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n>6.
(End)

A244873 Number of magic labelings of the prism graph I X C_7 with magic sum n.

Original entry on oeis.org

1, 29, 289, 1640, 6604, 21122, 57271, 137155, 298184, 599954, 1132942, 2029229, 3475465, 5728289, 9132418, 14141618, 21342771, 31483251, 45501823, 64563278, 90097018, 123839804, 167882881, 224723693, 297322402, 389163424, 504322196, 647537387, 824288767, 1040880947, 1304533204
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Comments

The graph is the 5th one shown in the link. This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_7 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A244497, A292281, A289992 (analogs for prism graphs I X C_k, k = 3,4,5,6,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Mathematica
    Table[61 n^7/1440 + 427 n^6/960 + 1463 n^5/720 + 2009 n^4/384 + 11809 n^3/1440 + 1253 n^2/160 + 169 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}] (* Bruno Berselli, Jul 08 2014 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,29,289,1640,6604,21122,57271,137155,298184},40] (* Harvey P. Dale, Aug 09 2017 *)

Formula

G.f.: (1+22*x+106*x^2+169*x^3+106*x^4+22*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 61*n^7/1440 + 427*n^6/960 + 1463*n^5/720 + 2009*n^4/384 + 11809*n^3/1440 + 1253*n^2/160 + 169*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

Extensions

Name made more self-contained by David J. Seal, Sep 14 2017

A244880 Number of magic labelings of the cycle-of-loops graph LOOP X C_8 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.

Original entry on oeis.org

1, 47, 650, 4726, 23219, 87677, 274132, 743724, 1806597, 4016683, 8306078, 16168802, 29904823, 52936313, 90209192, 148694104, 238002057, 371131047, 565361074, 843316046, 1234212155, 1775313397, 2513615996, 3507784580, 4830364045, 6570292131, 8835738822, 11757299770, 15491572031
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Maple
    A244880:=n->(630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630: seq(A244880(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    CoefficientList[Series[(1 + 38 (x + x^5) + 263 (x^2 + x^4) + 484 x^3 + x^6)/(1 - x)^9, {x, 0, 28}], x] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    Vec((1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Jan 12 2017

Formula

G.f.: (1+38*(x+x^5)+263*(x^2+x^4)+484*x^3+x^6) / (1-x)^9.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
(326*n^2-195*n+142)*a(n) +(-652*n^2-652*n-10725)*a(n-1) +(326*n^2+847*n+663)*a(n-2) +2*(-165*n^2-165*n-71)=0. - R. J. Mathar, Mar 10 2025

Extensions

Name corrected by David J. Seal, Sep 13 2017

A292281 Number of magic labelings of the prism graph I X C_6 having magic sum n.

Original entry on oeis.org

1, 20, 167, 867, 3322, 10309, 27410, 64770, 139479, 278674, 523457, 933725, 1594008, 2620411, 4168756, 6444020, 9711165, 14307456, 20656363, 29283143, 40832198, 56086305, 75987814, 101661910, 134442035, 175897566, 227863845, 292474657, 372197252, 469870007, 588742824
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := SeriesCoefficient[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, n}]; Table[f[n] + 2 Sum[f[i], {i, 0, n - 1}], {n, 0, 24}] (* Michael De Vlieger, Sep 15 2017 *)

Formula

a(n) = A244879(n) + 2*Sum_{i=0..n-1} A244879(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
[Proof of the g.f. follows from the g.f. of A244879 with the resummation demonstrated in A289992: g.f. = A244879(x)*(1+2*x/(1-x)). - R. J. Mathar, Mar 09 2025]

A293311 Rectangular array read by antidiagonals: A(n,k) = number of magic labelings of the graph LOOP X C_n (see comments) having magic sum k, n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 7, 1, 6, 15, 23, 26, 11, 1, 7, 21, 42, 70, 57, 18, 1, 8, 28, 69, 155, 197, 129, 29, 1, 9, 36, 106, 301, 533, 571, 289, 47, 1, 10, 45, 154, 532, 1223, 1884, 1640, 650, 76, 1, 11, 55, 215, 876, 2494, 5103, 6604, 4726, 1460, 123, 1
Offset: 1

Views

Author

L. Edson Jeffery, Oct 06 2017

Keywords

Comments

The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n.
The generating function for row n of this array was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews, et al., and is needed for the Mathematica program below.

Examples

			Array begins:
.  1   2    3     4      5       6       7        8        9        10
.  1   3    6    10     15      21      28       36       45        55
.  1   4   11    23     42      69     106      154      215       290
.  1   7   26    70    155     301     532      876     1365      2035
.  1  11   57   197    533    1223    2494     4654     8105     13355
.  1  18  129   571   1884    5103   11998    25362    49347     89848
.  1  29  289  1640   6604   21122   57271   137155   298184    599954
.  1  47  650  4726  23219   87677  274132   743724  1806597   4016683
.  1  76 1460 13604  81555  363606 1310974  4029310 10936124  26868719
.  1 123 3281 39175 286555 1508401 6271378 21836366 66220705 179784715
		

Crossrefs

Programs

  • Mathematica
    (* Run this first: *)
    << Omega.m;
    (* Then run the following in a different cell: *)
    nmax = 11; Do[cond = {}; Do[If[n == 1, AppendTo[cond, Subscript[a, 1] + Subscript[a, 2] == Subscript[a, 3]]; Break[], AppendTo[cond, If[j == n, Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 1] == Subscript[a, 2*n + 1], Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 2*j + 1] == Subscript[a, 2*n + 1]]]], {j, n}]; f = OEqSum[Product[Subscript[x, i]^Subscript[a, i], {i, 2*n + 1}], cond, \[Lambda]][[1]] /. {Subscript[x, 2*n + 1] -> z} /. {Subscript[x, _] -> 1}; Do[f = OEqR[f, Subscript[\[Lambda], k]], {k, Length[cond]}]; Do[a293311[n, k] = Coefficient[Series[f, {z, 0, nmax - 1}], z, k], {k, 0, nmax - 1}], {n, nmax}];
    (* Array: *)
    Grid[Table[a293311[n, k], {n, nmax}, {k, 0, nmax - 1}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    Flatten[Table[a293311[n, k - n], {k, 11}, {n, k}]]

A293309 Number of magic labelings of the graph LOOP X C_10 (see comments) having magic sum n, n >= 0.

Original entry on oeis.org

1, 123, 3281, 39175, 286555, 1508401, 6271378, 21836366, 66220705, 179784715, 445824731, 1025102013, 2211041131, 4514532465, 8789910980, 16416797116, 29556115153, 51502789451, 87162399205, 143684487475, 231291309931, 364347612673, 562724586326
Offset: 0

Views

Author

L. Edson Jeffery, Oct 05 2017

Keywords

Comments

The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n.
The generating function for this sequence was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews et al.

Crossrefs

Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310 (magic labelings of LOOP X C_k, for k=1..9).

Programs

  • Mathematica
    CoefficientList[Series[(1 + 112*z + 1983*z^2 + 9684*z^3 + 16120*z^4 + 9684*z^5 + 1983*z^6 + 112*z^7 + z^8)/(1 - z)^11, {z, 0, 22}], z]
    LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 123, 3281, 39175, 286555, 1508401, 6271378, 21836366, 66220705, 179784715, 445824731}, 25] (* Vincenzo Librandi, Oct 12 2017 *)

Formula

G.f.: (1 + 112*z + 1983*z^2 + 9684*z^3 + 16120*z^4 + 9684*z^5 + 1983*z^6 + 112*z^7 + z^8)/(1 - z)^11.

A293310 Number of magic labelings of the graph LOOP X C_9 (see comments) having magic sum n, n >= 0.

Original entry on oeis.org

1, 76, 1460, 13604, 81555, 363606, 1310974, 4029310, 10936124, 26868719, 60843972, 128724276, 257103166, 488789593, 890341484, 1562177132, 2651877099, 4371379686, 7018869628, 11006262508, 16893296453, 25429357976, 37604290362
Offset: 0

Views

Author

L. Edson Jeffery, Oct 06 2017

Keywords

Comments

The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n.
The generating function for this sequence was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews et al.

Crossrefs

Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293309 (magic labelings of LOOP X C_k, for k=1..8,10).

Programs

  • Mathematica
    CoefficientList[Series[(1 + 67*z + 811*z^2 + 3049*z^3 + 4609*z^4 + 3049*z^5 + 811*z^6 + 67*z^7 + z^8)/((1 + z)*(1 - z)^10), {z, 0, 22}], z]
  • PARI
    my(x='x+O('x^99));Vec((1+67*x+811*x^2+3049*x^3+4609*x^4+3049*x^5+811*x^6+67*x^7+x^8)/((1+x)*(1-x)^10)) \\ Altug Alkan, Oct 11 2017

Formula

G.f.: (1 + 67*z + 811*z^2 + 3049*z^3 + 4609*z^4 + 3049*z^5 + 811*z^6 + 67*z^7 + z^8)/((1 + z)*(1 - z)^10).

A293312 Rectangular array read by antidiagonals: A(n,k) = tr((M_n)^k), k >= 0, where M_n is the n X n matrix M_1 = {{1}}, M_n = {{0,...,0,1},{0,...,0,1,1},...,{0,1,...,1},{1,...,1}}, n > 1, and tr(.) is the trace.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 2, 4, 1, 4, 6, 2, 5, 1, 7, 11, 10, 3, 6, 1, 11, 26, 23, 15, 3, 7, 1, 18, 57, 70, 42, 21, 4, 8, 1, 29, 129, 197, 155, 69, 28, 4, 9, 1, 47, 289, 571, 533, 301, 106, 36, 5, 10, 1, 76, 650, 1640, 1884, 1223, 532, 154, 45, 5, 11
Offset: 1

Views

Author

L. Edson Jeffery, Oct 10 2017

Keywords

Comments

Conjecture: For all n >= 1, for all k >= 2, A(n, k) = A293311(k, n); i.e., A(n, k) = number of magic labelings of the graph LOOP X C_k with magic sum n - 1.

Examples

			Array begins:
.   1 1  1   1    1     1      1       1       1        1         1
.   2 1  3   4    7    11     18      29      47       76       123
.   3 2  6  11   26    57    129     289     650     1460      3281
.   4 2 10  23   70   197    571    1640    4726    13604     39175
.   5 3 15  42  155   533   1884    6604   23219    81555    286555
.   6 3 21  69  301  1223   5103   21122   87677   363606   1508401
.   7 4 28 106  532  2494  11998   57271  274132  1310974   6271378
.   8 4 36 154  876  4654  25362  137155  743724  4029310  21836366
.   9 5 45 215 1365  8105  49347  298184 1806597 10936124  66220705
.  10 5 55 290 2035 13355  89848  599954 4016683 26868719 179784715
.  11 6 66 381 2926 21031 154935 1132942 8306078 60843972 445824731
.  ...
		

Crossrefs

Cf. A293311.
Cf. A000012, A000032, A274975, A188128, A189237 (rows 1..5).
Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310, A293309 (columns k = 0,2..10 (conjectured)).

Programs

  • Mathematica
    s[0, x_] := 1; s[1, x_] := x; s[k_, x_] := x*s[k - 1, x] - s[k - 2, x]; c[n_, j_] := 2 (-1)^(j - 1) Cos[j*Pi/(2 n + 1)]; a[n_, k_] := Round[Sum[s[n - 1, c[n, j]]^(k), {j, n}]];
    (* Array: *)
    Grid[Table[a[n, k], {n, 11}, {k, 0, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    Flatten[Table[a[n, k - n], {k, 11}, {n, k}]]

Formula

Let S(0, x) = 1, S(1, x) = x, S(k, x) = x*S(k - 1, x) - S(k - 2, x) (the S-polynomials of Wolfdieter Lang) and c(n, j) = 2*(-1)^(j - 1)*cos(j*Pi/(2*n + 1)). Then A(n, k) = Sum_{j=1..n} S(n - 1, c(n, j))^(k), n >= 1, k >= 0.
Showing 1-10 of 12 results. Next