A006325 4-dimensional analog of centered polygonal numbers.
0, 0, 1, 7, 26, 70, 155, 301, 532, 876, 1365, 2035, 2926, 4082, 5551, 7385, 9640, 12376, 15657, 19551, 24130, 29470, 35651, 42757, 50876, 60100, 70525, 82251, 95382, 110026, 126295, 144305, 164176, 186032, 210001, 236215, 264810, 295926
Offset: 0
Examples
A representation of the LOOP X C_4 graph, with edges and loops indexed as shown, as used in the second Mathematica program below: . 3 1 . O_______O . | 2 | . |4 0| . |_______| . O 6 O . 5 7
References
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
- Richard P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n-1)*(n^2-n+1)/6: n in [0..40]]; // Vincenzo Librandi, May 22 2011
-
Mathematica
Table[n*(n-1)*(n^2-n+1)/6, {n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *) << Omega.m; n = 4; cond = {}; Do[AppendTo[cond, Sum[a[Mod[2*k - j, 2*n]], {j, 0, 2}] == a[2*n]], {k, 0, n - 1}]; f = OEqSum[Product[x[i]^a[i], {i, 0, 2*n}], cond, u][[1]]; Do[f = OEqR[f, Subscript[u, k]], {k, n}]; (* Generating function: *) f = Factor[f /. {x[2*n] -> x} /. {x[_] -> 1}] (* This sequence (with initial zeros dropped): *) CoefficientList[Series[f, {x, 0, 35}], x] (* L. Edson Jeffery, Oct 15 2017 *)
-
PARI
a(n)=n*(n-1)*(n^2-n+1)/6 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = n*(n-1)*(n^2-n+1)/6.
a(n) = ((n^5 - (n-1)^5) - (n^1 - (n-1)^1))/30 = (n^5 - (n-1)^5 - 1)/30. - Xavier Acloque, Jan 25 2003
The partial sums of the octahedral numbers: a(n+1) = Sum_{i=0..n} A005900(i). - Jonathan Vos Post, Mar 14 2006
G.f.: -x^2*(x+1)^2/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013 [Which is just rephrasing the partial sum formula with the Murthy formula in A005900. - R. J. Mathar, Jun 14 2014]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Yosu Yurramendi, Sep 03 2013
From Daniel Poveda Parrilla, Sep 09 2017: (Start)
a(n) = A169938(n-1)/6.
a(n+1) = A288486(n)/24. (End)
Sum_{n>=2} 1/a(n) = 12 - 2 * sqrt(3) * tanh(sqrt(3)*Pi/2). - Amiram Eldar, Jun 28 2020
E.g.f.: exp(x)*x^2*(3 + 4*x + x^2)/6. - Stefano Spezia, Dec 12 2021
Comments