A002817
Doubly triangular numbers: a(n) = n*(n+1)*(n^2+n+2)/8.
Original entry on oeis.org
0, 1, 6, 21, 55, 120, 231, 406, 666, 1035, 1540, 2211, 3081, 4186, 5565, 7260, 9316, 11781, 14706, 18145, 22155, 26796, 32131, 38226, 45150, 52975, 61776, 71631, 82621, 94830, 108345, 123256, 139656, 157641, 177310, 198765, 222111, 247456, 274911, 304590
Offset: 0
G.f. = x + 6*x^2 + 21*x^3 + 55*x^4 + 120*x^5 + 231*x^6 + 406*x^7 + 666*x^8 + ...
- A. Björner, The homology and shellability of matroids and geometric lattices, in Matroid Applications (ed. N. White), Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press 1992.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 124, #25, Q(3,r).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 0..10000 (first 1000 terms computed by T. D. Noe)
- G. E. Andrews, P. Paule, A. Riese and V. Strehl, MacMahon's partition analysis V. Bijections, recursions and magic squares, p. 37.
- Weymar Astaiza, Alexander J. Barrios, Henry Chimal-Dzul, Stephan Ramon Garcia, Jaaziel de la Luz, Victor H. Moll, Yunied Puig, and Diego Villamizar, Symmetric tensor powers of graphs, arXiv:2309.13741 [math.CO], 2023. See p. 12.
- Matthias Beck, The number of "magic" squares and hypercubes, arXiv:math/0201013 [math.CO], 2002-2005.
- A. G. Bell, Partitioning integers in n dimensions, The Computer Journal, 13 (1970), 278-283.
- Miklos Bona, A New Proof of the Formula for the Number of 3 X 3 Magic Squares, Mathematics Magazine, Vol. 70, No. 3 (Jun., 1997), pp. 201-203.
- L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33(4) (1966), pp. 771-782.
- Brian Conrey and Alex Gamburd, Pseudomoments of the Riemann zeta-function and pseudomagic squares, Journal of Number Theory, Volume 117, Issue 2, April 2006, Pages 263-278. See H4 on p. 269.
- P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), Research Paper #R2.
- Robert W. Donley, Partitions for semi-magic squares of size three, arXiv:1911.00977 [math.CO], 2019.
- I. J. Good, On the application of symmetric Dirichlet distributions and their mixtures to contingency tables, Ann. Statist. 4 (1976), no. 6, 1159-1189.
- I. J. Good, On the application of symmetric Dirichlet distributions and contingency tables, pp. 1178-1179. (Annotated scanned copy)
- Hansraj Gupta, Enumeration of symmetric matrices, Duke Math. J. 35 (3), 653-659, (September 1968).
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Milan Janjic, Two Enumerative Functions
- Neven Juric, Illustration of the 55 3 X 3 matrices
- Michal Opler, Pavel Valtr, and Tung Anh Vu, On the Arrangement of Hyperplanes Determined by n Points, EuroCG (39th European Workshop on Computational Geometry, Barcelona, Spain 2023) Session 7B, Talk 1, Vol. 54, No. 6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Henry Warburton, On Self-Repeating Series, Transactions of the Cambridge Philosophical Society, Vol. 9, 471-486, 1856.
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000292 (3-cycle count of \bar P_{n+4}),
A060446 (5-cycle count of \bar P_{n+3}),
A302695 (6-cycle count of \bar P_{n+5}).
-
A002817 := n->n*(n+1)*(n^2+n+2)/8;
-
a[ n_] := n (n + 1) (n^2 + n + 2) / 8; (* Michael Somos, Jul 24 2002 *)
LinearRecurrence[{5,-10,10,-5,1}, {0,1,6,21,55},40] (* Harvey P. Dale, Jul 18 2011 *)
nn=50;Join[{0},With[{c=(n(n+1))/2},Flatten[Table[Take[Accumulate[Range[ (nn(nn+1))/2]], {c,c}],{n,nn}]]]] (* Harvey P. Dale, Mar 19 2013 *)
-
{a(n) = n * (n+1) * (n^2 + n + 2) / 8}; /* Michael Somos, Jul 24 2002 */
-
concat(0, Vec(x*(1+x+x^2)/(1-x)^5 + O(x^50))) \\ Altug Alkan, Nov 15 2015
-
def A002817(n): return (m:=n*(n+1))*(m+2)>>3 # Chai Wah Wu, Aug 30 2024
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
A002721
Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) with entries satisfying 0 <= M_ijk <= n and all line sums equal to n.
Original entry on oeis.org
1, 12, 132, 847, 3921, 14506, 45402, 124707, 308407, 699766, 1477686, 2936517, 5540107, 9993192, 17333536, 29048541, 47220357, 74703832, 115341952, 174223731, 257989821, 375191422, 536708382, 756232687, 1050823851, 1441543026, 1954172962
Offset: 0
Comment from _N. J. A. Sloane_, Jul 06 2014: (Start)
Here are four of the twelve arrays showing that a(1) = 12 (each row shows top face, middle face, bottom face):
-----------
100 010 001
010 001 100
001 100 010
-----------
100 001 010
010 100 001
001 010 100
-----------
001 010 100
010 100 001
100 001 010
-----------
001 100 010
010 001 100
100 010 001
-----------
Each face must show one of the six 3 X 3 permutation matrices. There are 6 choices for the top face, and for each of these there are two choices for the second face and the third face is then determined, for a total of a(1)=6*2*1=12. (End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, Second Edition, Section 4.6.1.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. G. Bell, Partitioning integers in n dimensions, The Computer Journal, 13 (1970), 278-283.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973. [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+4272)+1 : n in [0..30] ]; // Wesley Ivan Hurt, Jul 01 2014
-
A002721:=n->(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+ 4272)+1: seq(A002721(n), n=0..30); # Wesley Ivan Hurt, Jul 01 2014
-
CoefficientList[Series[-(x^8 + 3*x^7 + 60*x^6 + 7*x^5 + 168*x^4 + 7*x^3 + 60*x^2 + 3*x + 1)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 01 2014 *)
-
Vec(-(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jul 01 2014
A257493
Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 55, 120, 231, 406, ...
1, 24, 282, 2008, 10147, 40176, 132724, ...
1, 120, 6210, 153040, 2224955, 22069251, 164176640, ...
1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
- Alois P. Heinz, Antidiagonals n = 0..20, flattened
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- Dennis Pixton, Ehrhart polynomials for n = 1, ..., 9
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n=1, 1, add(
`if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))
end:
A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
-
T(n, k)={
local(M=Map(Mat([n, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
} \\ Andrew Howroyd, Apr 04 2020
-
bigomega = sloane.A001222
@cached_function
def b(n, k):
if n == 1:
return 1
return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())
def A(n, k):
return b(prod(nth_prime(i) for i in (1..n))^k, k)
[A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
-
from sage.combinat.integer_matrices import IntegerMatrices
[IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
A001499
Number of n X n matrices with exactly 2 1's in each row and column, other entries 0.
Original entry on oeis.org
1, 0, 1, 6, 90, 2040, 67950, 3110940, 187530840, 14398171200, 1371785398200, 158815387962000, 21959547410077200, 3574340599104475200, 676508133623135814000, 147320988741542099484000, 36574751938491748341360000, 10268902998771351157327104000
Offset: 0
- R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, Sect. 6.3 Multipermutations, pp. 235-236, P(n,2), bipermutations.
- L. Erlebach and O. Ruehr, Problem 79-5, SIAM Review. Solution by D. E. Knuth. Reprinted in Problems in Applied Mathematics, ed. M. Klamkin, SIAM, 1990, p. 350.
- Shanzhen Gao and Kenneth Matheis, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
- J. T. Lewis, Maximal L-free subsets of a squarefree array, Congressus Numerantium, 141 (1999), 151-155.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (b).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- J. H. van Lint and R. M. Wilson, A Course in Combinatorics (Cambridge University Press, Cambridge, 1992), pp. 152-153. [The second edition is said to be a better reference.]
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..48 from R. W. Robinson)
- H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J., 33 (1996), 757-769.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806.
- L. Carlitz, Enumeration of symmetric arrays, Duke Math. J., Vol. 33 (1966), 771-782.
- Sally Cockburn and Joshua Lesperance, Deranged Socks, Mathematics Magazine, Vol. 86, no. 2, April 2013, pp. 97-109.
- L. Erlebach and O. Ruehr, Problem 79-5, SIAM Review, Vol. 21, No. 1 (Jan., 1979), p. 140. Solution by D. E. Knuth, SIAM Review, Vol. 22, No. 1 (Jan., 1980), pp. 101-102.
- M. E. Kuczma, 0-1-Matrices with Line-Sums Equal to 2, Am. Math. Month. 99 (1992) 959-961, E3419.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Zhonghua Tan, Shanzhen Gao, and H. Niederhausen, Enumeration of (0,1) matrices with constant row and column sums, Appl. Math. Chin. Univ. 21 (4) (2006) 479-486.
- Bo-Ying Wang and Fuzhen Zhang, On the precise number of (0,1)-matrices in A(R,S), Discrete Math. 187 (1998), no. 1-3, 211--220. MR1630720 (99f:05010). - From _N. J. A. Sloane_, Jun 07 2012
- Index entries for sequences related to binary matrices
-
a001499 n = a001499_list !! n
a001499_list = 1 : 0 : 1 : zipWith (*) (drop 2 a002411_list)
(zipWith (+) (zipWith (*) [3, 5 ..] $ tail a001499_list)
(zipWith (*) (tail a000290_list) a001499_list))
-- Reinhard Zumkeller, Jun 02 2013
-
a[n_] := (n-1)*n!*Gamma[n-1/2]*Hypergeometric1F1[2-n, 3/2-n, -1/2]/Sqrt[Pi]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 06 2011, after first formula *)
-
a(n)=if(n<2,n==0,(n^2-n)*(a(n-1)+(n-1)/2*a(n-2)))
-
seq(n)={Vec(serlaplace(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n)))))}; \\ Andrew Howroyd, Sep 09 2018
A001501
Number of n X n 0-1 matrices with all column and row sums equal to 3.
Original entry on oeis.org
1, 0, 0, 1, 24, 2040, 297200, 68938800, 24046189440, 12025780892160, 8302816499443200, 7673688777463632000, 9254768770160124288000, 14255616537578735986867200, 27537152449960680597739468800, 65662040698002721810659005184000
Offset: 0
G.f. = 1 + x^3 + 24*x^4 + 2040*x^5 + 297200*x^6 + 68938800*x^7 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 236, P(n,3).
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 1.1.3, page 2, f(n).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- Alois P. Heinz, Table of n, a(n) for n = 0..185 (first 51 terms from T. D. Noe)
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Bo-Ying Wang, Fuzhen Zhang, On the precise number of (0,1)-matrices in A(R,S), Discrete Math. 187 (1998), no. 1-3, 211--220. MR1630720 (99f:05010). - From _N. J. A. Sloane_, Jun 07 2012
- Index entries for sequences related to binary matrices
-
a:= n-> n!^2/6^n *add(add((-1)^b *2^a *3^b *(3*n-3*a-2*b)!/
(a! *b! *(n-a-b)!^2 *6^(n-a-b)), b=0..n-a), a=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 20 2011
# second Maple program:
a:= proc(n) option remember; `if`(n<4, (n-1)*(n-2)/2,
n*(n-1)*(9*(3*n^2-5*n+4)*a(n-1)+(3*n-6)*(3*n+1)*
(n-1)*a(n-2)+(9*n^2-30*n+13)*(n-1)*(n-2)^2*a(n-3)
-(3*n-2)*(n-1)*(n-2)^2*(n-3)^2*a(n-4))/(36*n-60))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 13 2017
-
Table[6^(-n) Total[Map[(-1)^#[[2]] n!^2 (#[[2]] + 3 #[[3]])! 2^#[[1]] 3^#[[2]]/(#[[1]]! #[[2]]! #[[3]]!^2 6^#[[3]]) &, Compositions[n, 3]]], {n, 0, 20}] (* Geoffrey Critzer, Mar 19 2011 *)
a[n_] := n!^2*Sum[2^(2k-n)*3^(k-n)*(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 07 2018 *)
-
{a(n) = local(k); if( n<0, 0, n!^2 * sum(j=0, n, sum(i=0, n-j, if(1, k=n-i-j; (j + 3*k)! / (3^i * 36^k * i! * k!^2))) / (j! * (-2)^j)))}; /* Michael Somos, May 28 2002 */
A000681
Number of n X n matrices with nonnegative entries and every row and column sum 2.
Original entry on oeis.org
1, 1, 3, 21, 282, 6210, 202410, 9135630, 545007960, 41514583320, 3930730108200, 452785322266200, 62347376347779600, 10112899541133589200, 1908371363842760216400, 414517594539154672566000, 102681435747106627787376000, 28772944645196614863048048000
Offset: 0
G.f. = 1 + x + 3*x^2 + 21*x^3 + 282*x^4 + 6210*x^5 + 202410*x^6 + 9135630*x^7 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, #25, a_n.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, section 3.5.10.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (a).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
- Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 49 terms from R. W. Robinson)
- H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J., 33 (1996), 757-769.
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
- Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
- William George Griffiths, On Integer Solutions to Linear Equations, Annals of Combinatorics 12:1 (2008), pp. 53-70.
- Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to magic squares
-
A000681 := proc(n)
coeftayl( exp(x/2)/sqrt(1-x),x=0,n) ;
%*(n!)^2 ;
end proc:
seq(A000681(n),n=0..10) ; # R. J. Mathar, May 01 2019
-
a[n_] := Sum[ ((2*i)!*n!^2) / (2^i*(i!^2*(n - i)!)), {i, 0, n}]/2^n; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 08 2011 *)
a[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 08 2012 *)
-
Vec( serlaplace(serlaplace( exp(x/2)/sqrt(1-x) )) ) /* Max Alekseyev, Apr 28 2014 */
-
from sage.combinat.integer_matrices import IntegerMatrices
def a(n): return IntegerMatrices([2]*n, [2]*n).cardinality() # Ralf Stephan, Mar 02 2014
A001500
Number of stochastic matrices of integers: n X n arrays of nonnegative integers with all row and column sums equal to 3.
Original entry on oeis.org
1, 1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000
Offset: 0
a(2) = 4 with: [0 3] [1 2] [2 1] [3 0]
[3 0], [2 1], [1 2], [0 3]. - _Bernard Schott_, Oct 15 2019
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, Problem 25(4), b_n (but beware errors).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- Alois P. Heinz, Table of n, a(n) for n = 0..180
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Petter Brändén, Jonathan Leake, Igor Pak, Lower bounds for contingency tables via Lorentzian polynomials, arXiv:2008.05907 [math.CO], 2020.
- I. P. Goulden, D. M. Jackson, and J. W. Reilly, The Hammond series of a symmetric function and its application to P-recursiveness, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence, although there are errors)
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to magic squares
-
a[n_] := 6^(-n) Sum[2^j 3^k n!^2 (3n - 2k - 3j)!/(j! k! (n - j - k)!^2 * 6^(n - j - k)), {j, 0, n}, {k, 0, n - j}];
a /@ Range[0, 15] (* Jean-François Alcover, Oct 15 2019, after Shanzhen Gao *)
A058390
Number of 4 X 4 matrices with nonnegative integer entries and all row sums equal to n, up to row and column permutation.
Original entry on oeis.org
1, 5, 53, 458, 3411, 19865, 95214, 383714, 1346183, 4202086, 11905966, 31061806, 75533056, 172800689, 374861365, 775978710, 1541027694, 2949003213, 5458806804, 9805626744, 17140511056
Offset: 0
A058528
Number of n X n (0,1) matrices with all column and row sums equal to 4.
Original entry on oeis.org
1, 0, 0, 0, 1, 120, 67950, 68938800, 116963796250, 315031400802720, 1289144584143523800, 7722015017013984456000, 65599839591251908982712750, 769237071909157579108571190000, 12163525741347497524178307740904300
Offset: 0
a(4) = 1 because there is only one possible 4 X 4 (0,1) matrix with all row and column sums equal to 4, the matrix of all 1's. a(5) = 120 = 5! because there are 5X4X3X2X1 ways of placing a zero in each successive column (row) so that it is not in the same row (column) as any previously placed.
- B. R. Perez-Salvador, S. de los Cobos Silva, M. A. Gutierrez-Andrade and A. Torres-Chazaro, A Reduced Formula for Precise Numbers of (0,1) Matrices in a(R,S), Disc. Math., 2002, 256, 361-372.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..150, [Computed with Maple program by Doron Zeilberger, see link below. This replaces an earlier b-file computed by Vladeta Jovovic (and corrected terms 26-31).]
- E. R. Canfield and B. D. McKay, Asymptotic enumeration of dense 0-1 matrices with equal row and column sums
- Shalosh B. Ekhad and Doron Zeilberger, In How Many Ways Can n (Straight) Men and n (Straight) Women Get Married, if Each Person Has Exactly k Spouses, Maple package Bipartite; Local copy [Pdf file only, no active links]
- B. D. McKay, 0-1 matrices with constant row and column sums
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to binary matrices
More terms from Gordon G. Cash (cash.gordon(AT)epa.gov), Oct 22 2002
A003438
Number of 5 X 5 matrices with nonnegative integer entries and row and column sums equal to n.
Original entry on oeis.org
1, 120, 6210, 153040, 2224955, 22069251, 164176640, 976395820, 4855258305, 20856798285, 79315936751, 272095118010, 854560160105, 2486299719645, 6765755480415, 17356306529251, 42250330784180, 98137852369965
Offset: 0
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, p. 234.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
CoefficientList[Series[(1+103x+4306x^2+63110x^3+388615x^4+1115068x^5+ 1575669x^6+1115068x^7+388615x^8+63110x^9+4306x^10+103x^11+x^12)/ (1-x)^17,{x,0,30}],x] (* Harvey P. Dale, Aug 17 2013 *)
Showing 1-10 of 19 results.
Comments