cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A246968 Erroneous version of A001500.

Original entry on oeis.org

1, 4, 55, 2008, 153040, 20987840, 4672874360
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2014

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

Cf. A001500.

A058916 Erroneous version of A001500.

Original entry on oeis.org

1, 1, 4, 5, 2008, 153040, 20933840, 4662857360, 1579060246400
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, b_n.

A257493 Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 26 2015

Keywords

Comments

Also the number of ordered factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity). A(2,2) = 3: (2*3)^2 = 36 = 4*9 = 6*6 = 9*4.

Examples

			Square array A(n,k) begins:
  1,   1,      1,        1,          1,           1,            1, ...
  1,   1,      1,        1,          1,           1,            1, ...
  1,   2,      3,        4,          5,           6,            7, ...
  1,   6,     21,       55,        120,         231,          406, ...
  1,  24,    282,     2008,      10147,       40176,       132724, ...
  1, 120,   6210,   153040,    2224955,    22069251,    164176640, ...
  1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
		

Crossrefs

Rows n=0+1, 2-9 give: A000012, A000027(k+1), A002817(k+1), A001496, A003438, A003439, A008552, A160318, A160319.
Main diagonal gives A110058.
Cf. A257463 (unordered factorizations), A333733 (non-isomorphic matrices), A008300 (binary matrices).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=1, 1, add(
          `if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
  • PARI
    T(n, k)={
      local(M=Map(Mat([n, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
    } \\ Andrew Howroyd, Apr 04 2020
  • Sage
    bigomega = sloane.A001222
    @cached_function
    def b(n, k):
        if n == 1:
            return 1
        return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())
    def A(n, k):
        return b(prod(nth_prime(i) for i in (1..n))^k, k)
    [A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
    
  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    [IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
    

A000681 Number of n X n matrices with nonnegative entries and every row and column sum 2.

Original entry on oeis.org

1, 1, 3, 21, 282, 6210, 202410, 9135630, 545007960, 41514583320, 3930730108200, 452785322266200, 62347376347779600, 10112899541133589200, 1908371363842760216400, 414517594539154672566000, 102681435747106627787376000, 28772944645196614863048048000
Offset: 0

Views

Author

Keywords

Comments

Or, number of labeled 2-regular pseudodigraphs (multiple arcs and loops allowed) of order n.
Also, number of permutations of the multiset {1^2,2^2,...,n^2} with the descent set consisting of multiples of 2. - Max Alekseyev, Apr 28 2014

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 282*x^4 + 6210*x^5 + 202410*x^6 + 9135630*x^7 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, #25, a_n.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, section 3.5.10.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (a).
  • M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
  • C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.

Crossrefs

Column k=2 of A257493.
Row sums of A269742 and A307804.
Row and column sums equal s: A000142 (s=1), A001500 (s=3), A172806 (s=4), A172862 (s=5), A172894 (s=6), A172919 (s=7), A172944 (s=8), A172958 (s=9).

Programs

  • Maple
    A000681 := proc(n)
        coeftayl( exp(x/2)/sqrt(1-x),x=0,n) ;
        %*(n!)^2 ;
    end proc:
    seq(A000681(n),n=0..10) ; # R. J. Mathar, May 01 2019
  • Mathematica
    a[n_] := Sum[ ((2*i)!*n!^2) / (2^i*(i!^2*(n - i)!)), {i, 0, n}]/2^n; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 08 2011 *)
    a[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 08 2012 *)
  • PARI
    Vec( serlaplace(serlaplace( exp(x/2)/sqrt(1-x) )) ) /* Max Alekseyev, Apr 28 2014 */
  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    def a(n): return IntegerMatrices([2]*n, [2]*n).cardinality() # Ralf Stephan, Mar 02 2014
    

Formula

Sum_{n >= 0} a(n) x^n / n!^2 = exp(x/2) / sqrt(1-x).
D-finite with recurrence a(n) = n^2*a(n-1) - (1/2)*n*(n-1)^2*a(n-2).
a(n) is asymptotic to c/sqrt(n)*(n!)^2 where c=0.93019... - Benoit Cloitre, Jun 25 2004
a(n) = sum(i=0..n, 2^(i-2*n) * C(n, i)^2 * (2*n-2*i)! * i! ).
a(n) = 2^(-n) * sum(i=0..n, ((n!)^2*(2*i)!) / ((i!)^2*((n-i)!*2^i)) ). - Shanzhen Gao, Nov 05 2007
In Cloitre's formula is c = exp(1/2)/sqrt(Pi) = 0.9301913671026328586. - Vaclav Kotesovec, Aug 12 2013
With c as used above by Cloitre and Kotesovec, a(n) is asymptotic to c/sqrt(n)*(n!)^2 * (1 + 2/(16*n) + 50/(16*n)^2 + 1100/(16*n)^3 + 32438/(16*n)^4 + 1185660/(16*n)^5 + 50498228/(16*n)^6 + 2438464600/(16*n)^7 + 131323987366/(16*n)^8 + 7782036656108/(16*n)^9 + 501905392385436/(16*n)^10 + ...). - Jon E. Schoenfield, Mar 03 2014
E.g.f.: 2/((2-x)*W(0)), where W(k) = 1 - (2*k+1)*x/(2-x-2*(k+1)*x/W(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2014

Extensions

More terms from David W. Wilson

A269743 Triangle of generalized Eulerian numbers T(n,k) = _3 read by rows, n >= 1, 0 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 11, 23, 11, 4, 1, 1, 11, 72, 325, 595, 595, 325, 72, 11, 1, 1, 26, 367, 3368, 14679, 34679, 46800, 34679, 14679, 3368, 367, 26, 1, 1, 57, 1630, 28819, 253247, 1212440, 3382133, 5588593, 5588593, 3382133, 1212440, 253247, 28819, 1630, 57, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 16 2016

Keywords

Comments

T(n,k) is the number of nonnegative integer n X n matrices with every row and column sum 3 and sum of entries below the main diagonal k. The case when every row and column sum is 1 is given by the Eulerian numbers (A008292). - Andrew Howroyd, Feb 22 2020

Examples

			Triangle begins:
1,
1,1,1,1,
1,4,11,23,11,4,1,
1,11,72,325,595,595,325,72,11,1,
...
		

Crossrefs

Row sums are A001500.
Columns k=0..4 are A000012, A000295, A260585, A260727, A260583.

Programs

Extensions

Terms a(23) and beyond from Andrew Howroyd, Feb 22 2020

A007105 Number of labeled Eulerian 3-regular digraphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 44, 7570, 1975560, 749649145, 399035751464, 289021136349036, 277435664056527360, 345023964977303838105, 545099236551025860229460, 1075595203804151695555622446
Offset: 0

Views

Author

Keywords

Comments

Apparently this counts the binary variant (all elements in {0,1}) of A001500 with zero trace. - R. J. Mathar, May 16 2021

References

  • R. W. Robinson, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A172806 Number of n X n of nonnegative integers with all row and column sums equal to 4.

Original entry on oeis.org

1, 1, 5, 120, 10147, 2224955, 1047649905, 936670590450, 1455918295922650, 3680232136895819610, 14356628851597700179050, 82857993930808028192521800, 683327637694741065563262206250, 7821620120684573354895941635688250
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

A246970 Number of connected bicubical multigraphs on 2n labeled nodes of two colors.

Original entry on oeis.org

1, 2, 31, 1272, 105720
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2014

Keywords

Comments

Read's 1971 letter includes additional terms for both this sequence and A001500. But the terms a(6) and a(7) given for A001500 are wrong, so presumably those for this sequence are also wrong. See A246968 and A246969 for the sequences as given in Read's letter and (presumably) also in his dissertation.

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

A246969 Erroneous version of A246970.

Original entry on oeis.org

1, 2, 31, 1272, 105720, 15492600, 3621844800
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2014

Keywords

Comments

This is the "connected" version of the problem studied by Read in A001500. Since the terms a(6) and a(7) for A001500 given in his letter (and presumably also in his dissertation) are known to be wrong, it is extremely likely that the values of a(6) and a(7) shown here are also wrong.

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 195

A344379 Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.

Original entry on oeis.org

1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1

Views

Author

R. J. Mathar, May 16 2021

Keywords

Comments

Derived by interpreting A001500 as the number of labeled 3-regular digraphs (in-degree and out-degree at each node=3), without regarding the trace (which means loops are allowed) and no limit on the individual entries (so multiple arcs in the same direction between nodes are allowed).
Then the formula of A123543 (Gilbert's article) allows these values to be refined by the number of weakly connected components.

Examples

			Triangle begins:
              1;
              3,           1;
             45,           9,         1;
           1782,         207,        18,        1;
         142164,       10260,       585,       30,      1;
       19943830,      953424,     35235,     1305,     45,    1;
     4507660380,   151369792,   3731049,    93555,   2520,   63,  1;
  1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
		

Crossrefs

Cf. A307804 (2-regular analog), A001500 (row sums), A045943 (subdiagonal).

Programs

  • Maple
    # Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
    # triangle of labeled graphs with k weakly connected components.
    lblNonc := proc(L::list)
        local k,x,g,Lkx,t,Lkxt,n,c ;
        add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
        log(1+%) ; # formula from A123543
        g := taylor(%,x=0,nops(L)) ;
        seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
        print(lc) ;# first column
        Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
        Lkxt := exp(t*%) ;
        for n from 0 to nops(L)-1 do
            tmp := coeftayl(Lkxt,x=0,n) ;
            for c from 0 to n do
                printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
            end do:
            printf("\n") ;
        end do:
    end proc:
    L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
    lblNonc(L) ;

Formula

T(n,n) = 1. [n nodes, each with a triple loop].
T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.
Showing 1-10 of 11 results. Next