Original entry on oeis.org
1, 4, 55, 2008, 153040, 20987840, 4672874360
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Original entry on oeis.org
1, 1, 4, 5, 2008, 153040, 20933840, 4662857360, 1579060246400
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, b_n.
A257493
Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 55, 120, 231, 406, ...
1, 24, 282, 2008, 10147, 40176, 132724, ...
1, 120, 6210, 153040, 2224955, 22069251, 164176640, ...
1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
- Alois P. Heinz, Antidiagonals n = 0..20, flattened
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- Dennis Pixton, Ehrhart polynomials for n = 1, ..., 9
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n=1, 1, add(
`if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))
end:
A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
-
T(n, k)={
local(M=Map(Mat([n, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
} \\ Andrew Howroyd, Apr 04 2020
-
bigomega = sloane.A001222
@cached_function
def b(n, k):
if n == 1:
return 1
return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())
def A(n, k):
return b(prod(nth_prime(i) for i in (1..n))^k, k)
[A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
-
from sage.combinat.integer_matrices import IntegerMatrices
[IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
A000681
Number of n X n matrices with nonnegative entries and every row and column sum 2.
Original entry on oeis.org
1, 1, 3, 21, 282, 6210, 202410, 9135630, 545007960, 41514583320, 3930730108200, 452785322266200, 62347376347779600, 10112899541133589200, 1908371363842760216400, 414517594539154672566000, 102681435747106627787376000, 28772944645196614863048048000
Offset: 0
G.f. = 1 + x + 3*x^2 + 21*x^3 + 282*x^4 + 6210*x^5 + 202410*x^6 + 9135630*x^7 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 125, #25, a_n.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, section 3.5.10.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.5.11 (a).
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements. Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970.
- C. B. Tompkins, Methods of successive restrictions in computational problems involving discrete variables. 1963, Proc. Sympos. Appl. Math., Vol. XV pp. 95-106; Amer. Math. Soc., Providence, R.I.
- Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 49 terms from R. W. Robinson)
- H. Anand, V. C. Dumir and H. Gupta, A combinatorial distribution problem, Duke Math. J., 33 (1996), 757-769.
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- S. Cockburn and J. Lesperance, Deranged socks, Mathematics Magazine, 86 (2013), 97-109.
- Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
- William George Griffiths, On Integer Solutions to Linear Equations, Annals of Combinatorics 12:1 (2008), pp. 53-70.
- Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- Richard J. Mathar, 2-regular Digraphs of the Lovelock Lagrangian, arXiv:1903.12477 [math.GM], 2019.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for sequences related to magic squares
-
A000681 := proc(n)
coeftayl( exp(x/2)/sqrt(1-x),x=0,n) ;
%*(n!)^2 ;
end proc:
seq(A000681(n),n=0..10) ; # R. J. Mathar, May 01 2019
-
a[n_] := Sum[ ((2*i)!*n!^2) / (2^i*(i!^2*(n - i)!)), {i, 0, n}]/2^n; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 08 2011 *)
a[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 08 2012 *)
-
Vec( serlaplace(serlaplace( exp(x/2)/sqrt(1-x) )) ) /* Max Alekseyev, Apr 28 2014 */
-
from sage.combinat.integer_matrices import IntegerMatrices
def a(n): return IntegerMatrices([2]*n, [2]*n).cardinality() # Ralf Stephan, Mar 02 2014
A269743
Triangle of generalized Eulerian numbers T(n,k) = _3 read by rows, n >= 1, 0 <= k <= 3*(n-1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 4, 11, 23, 11, 4, 1, 1, 11, 72, 325, 595, 595, 325, 72, 11, 1, 1, 26, 367, 3368, 14679, 34679, 46800, 34679, 14679, 3368, 367, 26, 1, 1, 57, 1630, 28819, 253247, 1212440, 3382133, 5588593, 5588593, 3382133, 1212440, 253247, 28819, 1630, 57, 1
Offset: 1
Triangle begins:
1,
1,1,1,1,
1,4,11,23,11,4,1,
1,11,72,325,595,595,325,72,11,1,
...
- Andrew Howroyd, Table of n, a(n) for n = 1..925 (first 25 rows)
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce, A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Andrew Howroyd, PARI Program
A007105
Number of labeled Eulerian 3-regular digraphs with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 1, 44, 7570, 1975560, 749649145, 399035751464, 289021136349036, 277435664056527360, 345023964977303838105, 545099236551025860229460, 1075595203804151695555622446
Offset: 0
- R. W. Robinson, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A172806
Number of n X n of nonnegative integers with all row and column sums equal to 4.
Original entry on oeis.org
1, 1, 5, 120, 10147, 2224955, 1047649905, 936670590450, 1455918295922650, 3680232136895819610, 14356628851597700179050, 82857993930808028192521800, 683327637694741065563262206250, 7821620120684573354895941635688250
Offset: 0
- R. H. Hardin, Table of n, a(n) for n = 0..56
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967.
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
A246970
Number of connected bicubical multigraphs on 2n labeled nodes of two colors.
Original entry on oeis.org
1, 2, 31, 1272, 105720
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Original entry on oeis.org
1, 2, 31, 1272, 105720, 15492600, 3621844800
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 195
A344379
Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
Original entry on oeis.org
1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1
Triangle begins:
1;
3, 1;
45, 9, 1;
1782, 207, 18, 1;
142164, 10260, 585, 30, 1;
19943830, 953424, 35235, 1305, 45, 1;
4507660380, 151369792, 3731049, 93555, 2520, 63, 1;
1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
-
# Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
# triangle of labeled graphs with k weakly connected components.
lblNonc := proc(L::list)
local k,x,g,Lkx,t,Lkxt,n,c ;
add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
log(1+%) ; # formula from A123543
g := taylor(%,x=0,nops(L)) ;
seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
print(lc) ;# first column
Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
Lkxt := exp(t*%) ;
for n from 0 to nops(L)-1 do
tmp := coeftayl(Lkxt,x=0,n) ;
for c from 0 to n do
printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
end do:
printf("\n") ;
end do:
end proc:
L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
lblNonc(L) ;
Showing 1-10 of 11 results.
Comments