cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061990 Number of ways to place 4 nonattacking queens on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 2, 12, 46, 140, 344, 732, 1400, 2468, 4080, 6404, 9632, 13980, 19688, 27020, 36264, 47732, 61760, 78708, 98960, 122924, 151032, 183740, 221528, 264900, 314384, 370532, 433920, 505148, 584840, 673644, 772232, 881300, 1001568, 1133780, 1278704, 1437132
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001

Keywords

Crossrefs

Cf. A061989.

Programs

  • Mathematica
    Join[{0,0,0,0,2,12,46},LinearRecurrence[{5,-10,10,-5,1},{140,344,732,1400,2468},30]] (* Harvey P. Dale, Mar 06 2013 *)
    CoefficientList[Series[-2 x^4 (x^3 - x^2 + x + 1) (x^4 + 4 x^2 + 1) / (x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
  • PARI
    a(n)=if(n<7,[0, 0, 0, 0, 2, 12, 46][n+1],n^4-18*n^3+139*n^2-534*n+840) \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: -2*x^4*(x^3-x^2+x+1)*(x^4+4*x^2+1)/(x-1)^5.
Recurrence: a(n)=5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), n >= 12.
Explicit formula (H. Tarry, 1890): a(n)=n^4-18*n^3+139*n^2-534*n+840, n >= 7.