cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A061989 Number of ways to place 3 nonattacking queens on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 0, 4, 14, 36, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001

Keywords

Crossrefs

Essentially the same as A079908.

Programs

  • Magma
    [0,0,0] cat [(n-3)*(n^2-6*n+12): n in [3..50]]; // G. C. Greubel, Apr 29 2022
    
  • Maple
    A061989 := proc(n)
        if n >= 3 then
            (n-3)*(n^2-6*n+12) ;
        else
            0;
        end if;
    end proc:
    seq(A061989(n),n=0..30) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    CoefficientList[Series[2*x^4*(2-x+2*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 02 2013 *)
  • SageMath
    [0,0,0]+[(n-3)*((n-3)^2 +3) for n in (3..50)] # G. C. Greubel, Apr 29 2022

Formula

G.f.: 2*x^4*(2-x+2*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 7.
Explicit formula (H. Tarry, 1890): a(n) = (n-3)*(n^2-6*n+12), n >= 3.
(4, 14, 36, ...) is the binomial transform of row 4 of A117937: (4, 10, 12, 6). - Gary W. Adamson, Apr 09 2006
a(n) = 2*A229183(n-3). - R. J. Mathar, Aug 16 2019
E.g.f.: 36 + 14*x + 2*x^2 + (-36 + 22*x - 6*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 29 2022

A061991 Number of ways to place 5 nonattacking queens on a 5 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 40, 164, 568, 1614, 3916, 8492, 16852, 31100, 54068, 89428, 141812, 216932, 321700, 464348, 654548, 903532, 1224212, 1631300, 2141428, 2773268, 3547652, 4487692, 5618900, 6969308, 8569588, 10453172, 12656372, 15218500, 18181988, 21592508
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^5 (4 x^11 -11 x^10 + 16 x^9 + 7 x^8 - 32 x^7 + 38 x^6 + 6 x^5 + 8 x^4 - 8 x^3 + 37 x^2 - 10 x + 5) / (x-1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, May 12 2013 *)

Formula

G.f.: 2*x^5*(4*x^11 - 11*x^10 + 16*x^9 + 7*x^8 - 32*x^7 + 38*x^6 + 6*x^5 + 8*x^4 - 8*x^3 + 37*x^2 - 10*x + 5)/(x - 1)^6.
Recurrence: a(n) = 6*a(n - 1) - 15*a(n - 2) + 20*a(n - 3) - 15*a(n - 4) + 6*a(n - 5) - a(n - 6), n >= 17.
Explicit formula (V. Kotesovec, 1992): a(n) = n^5 - 30*n^4 + 407*n^3 - 3098*n^2 + 13104*n - 24332, n >= 11.

A061992 Number of ways to place 6 nonattacking queens on a 6 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 94, 550, 2292, 7552, 21362, 52856, 117694, 241484, 463038, 838816, 1448002, 2398292, 3832374, 5935120, 8941514, 13145292, 18908302, 26670584, 36961170, 50409604, 67758182, 89874912, 117767194, 152596220
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2 x^6 (4 x^17 -12 x^16 + 12 x^15 + 10 x^14 - 10 x^13 + 40 x^12 - 278 x^11 + 677 x^10 - 582 x^9 - 62 x^8 + 654 x^7 - 501 x^6 + 293 x^5 - 46 x^4 + 138 x^3 - 12 x^2 + 33 x + 2) / (x-1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)

Formula

G.f.: - 2*x^6*(4*x^17 - 12*x^16 + 12*x^15 + 10*x^14 - 10*x^13 + 40*x^12 - 278*x^11 + 677*x^10 - 582*x^9 - 62*x^8 + 654*x^7 - 501*x^6 + 293*x^5 - 46*x^4 + 138*x^3 - 12*x^2 + 33*x + 2)/(x - 1)^7.
Recurrence: a(n) = 7*a(n - 1) - 21*a(n - 2) + 35*a(n - 3) - 35*a(n - 4) + 21*a(n - 5) - 7*a(n - 6) + a(n - 7), n >= 24.
Explicit formula (V.Kotesovec, 1992): a(n) = n^6 - 45*n^5 + 943*n^4 - 11755*n^3 + 91480*n^2 - 418390*n + 870920, n >= 17.

A061993 Number of ways to place 7 nonattacking queens on a 7 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 40, 312, 2038, 9632, 37248, 120104, 335010, 835056, 1897702, 3998456, 7907094, 14818300, 26512942, 45562852, 75580634, 121520020, 190031678, 289879092, 432420154, 632159540, 907376502, 1280833348
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*x^7*(20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23)/(1-x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
  • SageMath
    def p(x): return 20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23
    [( 2*x^7*p(x)/(1-x)^8 ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Apr 29 2022

Formula

Explicit formula (V. Kotesovec, 1992): a(n) = n^7 - 63*n^6 + 1879*n^5 - 34411*n^4 + 417178*n^3 - 3336014*n^2 + 16209916*n - 36693996, n >= 23.
Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), n >= 31.
G.f.: 2*x^7*(20 - 4*x + 331*x^2 - 88*x^3 + 1292*x^4 - 1356*x^5 + 2019*x^6 + 264*x^7 - 2857*x^8 + 6472*x^9 - 7616*x^10 + 7462*x^11 - 7831*x^12 + 8326*x^13 - 5672*x^14 + 1998*x^15 - 308*x^16 - 142*x^17 + 510*x^18 - 284*x^19 - 220*x^20 + 320*x^21 - 140*x^22 + 24*x^23)/(1 - x)^8.

A172213 Number of ways to place 4 nonattacking knights on a 4 X n board.

Original entry on oeis.org

1, 16, 84, 412, 1416, 3640, 7928, 15384, 27352, 45432, 71480, 107608, 156184, 219832, 301432, 404120, 531288, 686584, 873912, 1097432, 1361560, 1670968, 2030584, 2445592, 2921432
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(16 x^9 - 20 x^8 - 40 x^7 + 172 x^6 - 81 x^5 + 41 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,16,84,412,1416,3640,7928,15384,27352,45432},30] (* Harvey P. Dale, Apr 16 2022 *)

Formula

Explicit formula (Vaclav Kotesovec, 26.1.2010): a(n) = 8*(4*n^4-36*n^3+170*n^2-450*n+537)/3, n>=6.
G.f.: -x*(16*x^9-20*x^8-40*x^7+172*x^6-81*x^5+41*x^4+142*x^3+14*x^2+11*x+1)/(x-1)^5. - Vaclav Kotesovec, Mar 25 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Jun 26 2025

A319284 The profiles of the backtrack tree for the n queens problem, triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0

Views

Author

Peter Luschny, Sep 16 2018

Keywords

Comments

The profile (p_0, p_1, ..., p_n) is the number of nodes at each level of the tree.

Examples

			[1]
[1,  1]
[1,  2,  0]
[1,  3,  2,    0]
[1,  4,  6,    4,    2]
[1,  5,  12,  14,   12,    10]
[1,  6,  20,  36,   46,    40,     4]
[1,  7,  30,  76,  140,   164,    94,     40]
[1,  8,  42, 140,  344,   568,   550,    312,     92]
[1,  9,  56, 234,  732,  1614,  2292,   2038,   1066,    352]
[1, 10,  72, 364, 1400,  3916,  7552,   9632,   7828,   4040,    724]
[1, 11,  90, 536, 2468,  8492, 21362,  37248,  44148,  34774,  15116,  2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.

Crossrefs

Cf. A000170 (T(n,n)), A319283 (row sums), A319288 (indices of the row maxima).
Cf. A000012 (col. 0), A000027 (col. 1), A002378 (col. 2), A061989 and A079908 (col. 3), A061990 (col. 4), A061991 (col. 5), A061992 (col. 6), A061993 (col. 7), A172449 (col. 8).

Programs

  • Julia
    # See the link section.

A172203 Number of ways to place 4 nonattacking kings on a 4 X n board.

Original entry on oeis.org

0, 0, 9, 79, 454, 1566, 4103, 9009, 17484, 30984, 51221, 80163, 120034, 173314, 242739, 331301, 442248, 579084, 745569, 945719, 1183806, 1464358, 1792159, 2172249, 2609924
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (68 x^4 - 4 x^3 + 149 x^2 + 34 x + 9) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (64n^4 - 720n^3 + 3347n^2 - 7569n + 6894)/6, n>=3.
G.f.: -x^3*(68*x^4-4*x^3+149*x^2+34*x+9)/(x-1)^5. - Vaclav Kotesovec, Mar 24 2010

A172230 Number of ways to place 4 nonattacking wazirs on a 4 X n board.

Original entry on oeis.org

0, 2, 61, 405, 1502, 4072, 9091, 17791, 31660, 52442, 82137, 123001, 177546, 248540, 339007, 452227, 591736, 761326, 965045, 1207197, 1492342, 1825296, 2211131, 2655175, 3163012, 3740482, 4393681, 5128961, 5952930, 6872452, 7894647
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x (4 x^5 + 12 x^4 + 67 x^3 + 120 x^2 + 51 x + 2) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (64*n^4 - 432*n^3 + 1235*n^2 - 1797*n + 1122)/6, n>=3.
G.f.: -x^2*(4*x^5+12*x^4+67*x^3+120*x^2+51*x+2)/(x-1)^5. - Vaclav Kotesovec, Mar 25 2010

Extensions

More terms from Vincenzo Librandi, May 28 2013

A172449 Number of ways to place 8 nonattacking queens on an 8 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 92, 1066, 7828, 44148, 195270, 707698, 2211868, 6120136, 15324708, 35312064, 75937606, 153942964, 296590536, 546621416, 968910732, 1659114170, 2754780934, 4449361442, 7009572728, 10796663102, 16292133888
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 03 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^7 (-72 x^31 + 360 x^30 - 360 x^29 - 1320 x^28 + 4208 x^27 - 9064 x^26 + 28358 x^25 - 65290 x^24 + 80160 x^23 - 41550 x^22 - 19482 x^21 + 62314 x^20 - 43912 x^19 - 81620 x^18 + 228424 x^17 - 261720 x^16 + 248114 x^15 - 336290 x^14 + 460564 x^13 - 453438 x^12 + 288474 x^11 - 135252 x^10 + 80270 x^9 - 85476 x^8 + 49676 x^7 - 23614 x^6 - 4768 x^5 - 1794 x^4 - 4344 x^3 - 1546 x^2 - 238 x - 92) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)

Formula

a(n) = n^8 - 84*n^7 + 3378*n^6 - 85078*n^5 + 1467563*n^4 - 17723656*n^3 + 145910074*n^2 - 745654756*n + 1802501048, for n >= 31. - Vaclav Kotesovec, Feb 03 2010
G.f.: x^8*(-72*x^31 + 360*x^30 - 360*x^29 - 1320*x^28 + 4208*x^27 - 9064*x^26 + 28358*x^25 - 65290*x^24 + 80160*x^23 - 41550*x^22 - 19482*x^21 + 62314*x^20 - 43912*x^19 - 81620*x^18 + 228424*x^17 - 261720*x^16 + 248114*x^15 - 336290*x^14 + 460564*x^13 - 453438*x^12 + 288474*x^11 - 135252*x^10 + 80270*x^9 - 85476*x^8 + 49676*x^7 - 23614*x^6 - 4768*x^5 - 1794*x^4 - 4344*x^3 - 1546*x^2 - 238*x - 92)/(x-1)^9. - Vaclav Kotesovec, Mar 20 2010

A172208 Number of ways to place 4 nonattacking bishops on a 4 X n board.

Original entry on oeis.org

1, 9, 61, 260, 927, 2578, 5965, 12066, 22135, 37678, 60457, 92488, 136043, 193650, 268093, 362412, 479903, 624118, 798865, 1008208, 1256467, 1548218, 1888293, 2281780, 2734023, 3250622, 3837433, 4500568, 5246395, 6081538, 7012877
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1 (2 x^12 - 2 x^11 + 4 x^10 - 24 x^9 + 50 x^8 - 10 x^7 + 41 x^6 - 23 x^5 + 152 * x^4 + 35 x^3 + 26  x^2 + 4 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,9,61,260,927,2578,5965,12066,22135,37678,60457,92488,136043},40] (* Harvey P. Dale, Dec 13 2021 *)

Formula

a(n) = (32*n^4 -336*n^3 +1702*n^2 -4701*n +5844) / 3, n>=9.
G.f.: -x * (2*x^12 -2*x^11 +4*x^10 -24*x^9 +50*x^8 -10*x^7 +41*x^6 -23*x^5 +152*x^4 +35*x^3 +26*x^2 +4*x+1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010
Showing 1-10 of 14 results. Next