A061989
Number of ways to place 3 nonattacking queens on a 3 X n board.
Original entry on oeis.org
0, 0, 0, 0, 4, 14, 36, 76, 140, 234, 364, 536, 756, 1030, 1364, 1764, 2236, 2786, 3420, 4144, 4964, 5886, 6916, 8060, 9324, 10714, 12236, 13896, 15700, 17654, 19764, 22036, 24476, 27090, 29884, 32864, 36036, 39406, 42980, 46764, 50764
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 29 2001
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- E. Lucas, Recreations mathematiques I, Albert Blanchard, Paris, 1992, p. 231.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[0,0,0] cat [(n-3)*(n^2-6*n+12): n in [3..50]]; // G. C. Greubel, Apr 29 2022
-
A061989 := proc(n)
if n >= 3 then
(n-3)*(n^2-6*n+12) ;
else
0;
end if;
end proc:
seq(A061989(n),n=0..30) ; # R. J. Mathar, Aug 16 2019
-
CoefficientList[Series[2*x^4*(2-x+2*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 02 2013 *)
-
[0,0,0]+[(n-3)*((n-3)^2 +3) for n in (3..50)] # G. C. Greubel, Apr 29 2022
A061991
Number of ways to place 5 nonattacking queens on a 5 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 40, 164, 568, 1614, 3916, 8492, 16852, 31100, 54068, 89428, 141812, 216932, 321700, 464348, 654548, 903532, 1224212, 1631300, 2141428, 2773268, 3547652, 4487692, 5618900, 6969308, 8569588, 10453172, 12656372, 15218500, 18181988, 21592508
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
CoefficientList[Series[2 x^5 (4 x^11 -11 x^10 + 16 x^9 + 7 x^8 - 32 x^7 + 38 x^6 + 6 x^5 + 8 x^4 - 8 x^3 + 37 x^2 - 10 x + 5) / (x-1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, May 12 2013 *)
A061992
Number of ways to place 6 nonattacking queens on a 6 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 4, 94, 550, 2292, 7552, 21362, 52856, 117694, 241484, 463038, 838816, 1448002, 2398292, 3832374, 5935120, 8941514, 13145292, 18908302, 26670584, 36961170, 50409604, 67758182, 89874912, 117767194, 152596220
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
-
CoefficientList[Series[-2 x^6 (4 x^17 -12 x^16 + 12 x^15 + 10 x^14 - 10 x^13 + 40 x^12 - 278 x^11 + 677 x^10 - 582 x^9 - 62 x^8 + 654 x^7 - 501 x^6 + 293 x^5 - 46 x^4 + 138 x^3 - 12 x^2 + 33 x + 2) / (x-1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
A061993
Number of ways to place 7 nonattacking queens on a 7 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 40, 312, 2038, 9632, 37248, 120104, 335010, 835056, 1897702, 3998456, 7907094, 14818300, 26512942, 45562852, 75580634, 121520020, 190031678, 289879092, 432420154, 632159540, 907376502, 1280833348
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes, part of V. Kotesovec, Between chessboard and computer, 1996, pp. 204 - 206.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
CoefficientList[Series[2*x^7*(20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23)/(1-x)^8, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
-
def p(x): return 20-4*x+331*x^2-88*x^3+1292*x^4-1356*x^5+2019*x^6 +264*x^7-2857*x^8+6472*x^9-7616*x^10+7462*x^11-7831*x^12+8326*x^13-5672*x^14 +1998*x^15-308*x^16-142*x^17+510*x^18-284*x^19-220*x^20+320*x^21-140*x^22 +24*x^23
[( 2*x^7*p(x)/(1-x)^8 ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Apr 29 2022
A172213
Number of ways to place 4 nonattacking knights on a 4 X n board.
Original entry on oeis.org
1, 16, 84, 412, 1416, 3640, 7928, 15384, 27352, 45432, 71480, 107608, 156184, 219832, 301432, 404120, 531288, 686584, 873912, 1097432, 1361560, 1670968, 2030584, 2445592, 2921432
Offset: 1
-
CoefficientList[Series[-(16 x^9 - 20 x^8 - 40 x^7 + 172 x^6 - 81 x^5 + 41 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,16,84,412,1416,3640,7928,15384,27352,45432},30] (* Harvey P. Dale, Apr 16 2022 *)
A319284
The profiles of the backtrack tree for the n queens problem, triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0
[1]
[1, 1]
[1, 2, 0]
[1, 3, 2, 0]
[1, 4, 6, 4, 2]
[1, 5, 12, 14, 12, 10]
[1, 6, 20, 36, 46, 40, 4]
[1, 7, 30, 76, 140, 164, 94, 40]
[1, 8, 42, 140, 344, 568, 550, 312, 92]
[1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352]
[1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724]
[1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680]
[1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
- D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
- Peter Luschny, Rows n = 0..19, flattened
- Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
- V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- Peter Luschny, Julia implementation of the n queens problem with profiles
- Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO] 2021.
- Wikipedia, Backtracking
- Wikipedia, Eight queens puzzle
A172203
Number of ways to place 4 nonattacking kings on a 4 X n board.
Original entry on oeis.org
0, 0, 9, 79, 454, 1566, 4103, 9009, 17484, 30984, 51221, 80163, 120034, 173314, 242739, 331301, 442248, 579084, 745569, 945719, 1183806, 1464358, 1792159, 2172249, 2609924
Offset: 1
-
CoefficientList[Series[- x^2 (68 x^4 - 4 x^3 + 149 x^2 + 34 x + 9) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
A172230
Number of ways to place 4 nonattacking wazirs on a 4 X n board.
Original entry on oeis.org
0, 2, 61, 405, 1502, 4072, 9091, 17791, 31660, 52442, 82137, 123001, 177546, 248540, 339007, 452227, 591736, 761326, 965045, 1207197, 1492342, 1825296, 2211131, 2655175, 3163012, 3740482, 4393681, 5128961, 5952930, 6872452, 7894647
Offset: 1
-
CoefficientList[Series[- x (4 x^5 + 12 x^4 + 67 x^3 + 120 x^2 + 51 x + 2) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
A172449
Number of ways to place 8 nonattacking queens on an 8 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 92, 1066, 7828, 44148, 195270, 707698, 2211868, 6120136, 15324708, 35312064, 75937606, 153942964, 296590536, 546621416, 968910732, 1659114170, 2754780934, 4449361442, 7009572728, 10796663102, 16292133888
Offset: 1
-
CoefficientList[Series[x^7 (-72 x^31 + 360 x^30 - 360 x^29 - 1320 x^28 + 4208 x^27 - 9064 x^26 + 28358 x^25 - 65290 x^24 + 80160 x^23 - 41550 x^22 - 19482 x^21 + 62314 x^20 - 43912 x^19 - 81620 x^18 + 228424 x^17 - 261720 x^16 + 248114 x^15 - 336290 x^14 + 460564 x^13 - 453438 x^12 + 288474 x^11 - 135252 x^10 + 80270 x^9 - 85476 x^8 + 49676 x^7 - 23614 x^6 - 4768 x^5 - 1794 x^4 - 4344 x^3 - 1546 x^2 - 238 x - 92) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
A172208
Number of ways to place 4 nonattacking bishops on a 4 X n board.
Original entry on oeis.org
1, 9, 61, 260, 927, 2578, 5965, 12066, 22135, 37678, 60457, 92488, 136043, 193650, 268093, 362412, 479903, 624118, 798865, 1008208, 1256467, 1548218, 1888293, 2281780, 2734023, 3250622, 3837433, 4500568, 5246395, 6081538, 7012877
Offset: 1
-
CoefficientList[Series[-1 (2 x^12 - 2 x^11 + 4 x^10 - 24 x^9 + 50 x^8 - 10 x^7 + 41 x^6 - 23 x^5 + 152 * x^4 + 35 x^3 + 26 x^2 + 4 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,9,61,260,927,2578,5965,12066,22135,37678,60457,92488,136043},40] (* Harvey P. Dale, Dec 13 2021 *)
Showing 1-10 of 14 results.
Comments