cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A172214 Number of ways to place 5 nonattacking knights on a 5 X n board.

Original entry on oeis.org

1, 28, 259, 1968, 9386, 30842, 82738, 192336, 400277, 763984, 1360797, 2291056, 3681226, 5687022, 8496534, 12333352, 17459691, 24179516, 32841667, 43842984, 57631432, 74709226, 95635956, 121031712, 151580209
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(42 x^12 - 52 x^11 - 268 x^10 + 884 x^9 - 268 x^8 - 1188 x^7 + 2834 x^6 - 720 x^5 + 918 x^4 + 814 x^3 + 106 x^2 + 22 x + 1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (625n^5-8250n^4+57235n^3-242778n^2+608440n-705984)/24, n>=8.
G.f.: x * (42*x^12 -52*x^11 -268*x^10 +884*x^9 -268*x^8 -1188*x^7 +2834*x^6 -720*x^5 +918*x^4 +814*x^3 +106*x^2 +22*x +1) / (x-1)^6. - Vaclav Kotesovec, Mar 25 2010

A172215 Number of ways to place 6 nonattacking knights on a 6 X n board.

Original entry on oeis.org

1, 58, 729, 8830, 60285, 257318, 858262, 2404448, 5879329, 12927182, 26115008, 49238436, 87675623, 148787822, 242366502, 381127124, 581249573, 862965246, 1251190796, 1776208532, 2474393475, 3388987070, 4570917554, 6079666980
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(104 x^15 - 116 x^14 - 1328 x^13 + 3992 x^12 + 806 x^11 - 16380 x^10 + 27343 x^9 - 4845 x^8 - 15537 x^7 + 38275 x^6 - 2753 x^5 + 11789 x^4 + 4910 x^3 + 344 x^2 + 51 x + 1) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,58,729,8830,60285,257318,858262,2404448,5879329,12927182,26115008,49238436,87675623,148787822,242366502,381127124},30] (* Harvey P. Dale, Dec 31 2022 *)

Formula

a(n) = (648n^6-11340n^5+103770n^4-606645n^3+2328317n^2-5466660n+6051720)/10, n>=10.
G.f.: -x * (104*x^15 -116*x^14 -1328*x^13 +3992*x^12 +806*x^11 -16380*x^10 +27343*x^9 -4845*x^8 -15537*x^7 +38275*x^6 -2753*x^5 +11789*x^4 +4910*x^3 +344*x^2 +51*x +1) / (x-1)^7. - Vaclav Kotesovec, Mar 25 2010
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Wesley Ivan Hurt, Apr 16 2023

A172217 Number of ways to place 7 nonattacking knights on a 7 X n board.

Original entry on oeis.org

1, 78, 1758, 38588, 383246, 2135344, 8891854, 30108310, 86669806, 219845764, 504261973, 1065642840, 2104251027, 3924818982, 6973786593, 11884673662, 19532410762, 31097451768, 48140491605, 72688612756, 107333684073
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(252 x^18 - 272 x^17 - 5134 x^16 + 14468 x^15 + 19721 x^14 - 132666 x^13 + 174233 x^12 + 119440 x^11 - 540473 x^10 + 654954 x^9 - 89133 x^8 - 93778 x^7 + 497782 x^6 + 56796 x^5 + 119468 x^4 + 26652 x^3 + 1162 x^2 + 70 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

Formula

a(n) = (117649n^7-2571471n^6+29223943n^5-216954465n^4+1114503256n^3-3907492824n^2+8562799512n-8962924320)/720,n>=12.
For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - 3(k-1)(3k-4)/2/k!*(kn)^(k-1) + ...
G.f.: x * (252*x^18 -272*x^17 -5134*x^16 +14468*x^15 +19721*x^14 -132666*x^13 +174233*x^12 +119440*x^11 -540473*x^10 +654954*x^9 -89133*x^8 -93778*x^7 +497782*x^6 +56796*x^5 +119468*x^4 +26652*x^3 +1162*x^2 +70*x +1) / (x-1)^8. - Vaclav Kotesovec, Mar 25 2010

A172219 Number of ways to place 4 nonattacking nightriders on a 4 X n board.

Original entry on oeis.org

1, 16, 84, 412, 1126, 2760, 5739, 10982, 19695, 33068, 52801, 80638, 118731, 169368, 235135, 318890, 423733, 553028, 710389, 899690, 1125059, 1390880, 1701793, 2062694, 2478735, 2955324, 3498125, 4113058, 4806299, 5584280, 6453689
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2 x^21 - 6 x^20 + 10 x^19 - 14 x^18 + 22 x^17 - 30 x^16 - 26 x^15 + 162 x^14 - 272 x^13 + 364 x^12 - 466 x^11 + 526 x^10 - 303 x^9 - 207 x^8 + 603 x^7 - 517 x^6 + 489 x^5 - 249 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (32n^4 - 432n^3 + 3190n^2 - 13323n + 25530)/3, n>=18.
G.f.: -x * (2*x^21 -6*x^20 +10*x^19 -14*x^18 +22*x^17 -30*x^16 -26*x^15 +162*x^14 -272*x^13 +364*x^12 -466*x^11 +526*x^10 -303*x^9 -207*x^8 +603*x^7 -517*x^6 +489*x^5 -249*x^4 +142*x^3 +14*x^2 +11*x +1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010

A174698 Number of ways to place 8 nonattacking knights on an 8 X n board.

Original entry on oeis.org

1, 81, 4409, 175720, 2479881, 17925691, 92952858, 379978716, 1286959255, 3765248749, 9805497200, 23226916560, 50866495373, 104288896551, 202154535834, 373400685738, 661407061211, 1129334088897, 1866838857216
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 27 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(592 x^21 - 584 x^20 - 18100 x^19 + 49628 x^18 + 134264 x^17 - 735838 x^16 + 584418 x^15 + 2607764 x^14 - 7093608 x^13 + 5656936 x^12 + 5136811 x^11 - 13973779 x^10 + 14583702 x^9 - 1612610 x^8 + 2009820 x^7 + 6682287 x^6 + 1572406 x^5 + 1050447 x^4 + 138871 x^3 + 3716 x^2 + 72 x + 1) / (1 - x)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

Explicit formula: a(n) = (262144*n^8 -6881280*n^7+93456384*n^6 -838693632*n^5 +5361604836*n^4 -24739168020*n^3+79766188151*n^2 -163079018193*n +160750559340)/630, n>=14.
G.f.: x*(592*x^21 -584*x^20 -18100*x^19 +49628*x^18+134264*x^17 -735838*x^16 +584418*x^15+2607764*x^14 -7093608*x^13 +5656936*x^12 +5136811*x^11 -13973779*x^10 +14583702*x^9 -1612610*x^8 +2009820*x^7 +6682287*x^6 +1572406*x^5 +1050447*x^4 +138871*x^3+3716*x^2 +72*x+1)/(1-x)^9.
Showing 1-5 of 5 results.