cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061996 Number of ways to place 3 nonattacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 8, 140, 964, 3920, 11860, 29708, 65240, 129984, 240240, 418220, 693308, 1103440, 1696604, 2532460, 3684080, 5239808, 7305240, 10005324, 13486580, 17919440, 23500708, 30456140, 39043144, 49553600, 62316800
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4x^3(2 +21x +38x^2 -42x^3 +11x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
  • SageMath
    [(n-1)*(n-2)*(n^4+3*n^3-20*n^2-30*n+132)/6 -44*bool(n==0) for n in (0..40)] # G. C. Greubel, Apr 29 2022

Formula

G.f.: 4*x^3*(2 + 21*x + 38*x^2 - 42*x^3 + 11*x^4)/(1 - x)^7.
Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), n >= 8.
a(n) = (n-1)*(n-2)*(n^4 + 3*n^3 - 20*n^2 - 30*n + 132)/6, n >= 1.
a(n) = A193580(n,3). - R. J. Mathar, Sep 03 2016
E.g.f.: -44 + (1/6)*(264 -264*x +132*x^2 -36*x^3 +38*x^4 +15*x^5 +x^6)*exp(x). - G. C. Greubel, Apr 29 2022