cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062026 a(n) = n*(n+1)*(n^2 - 3*n + 6)/4.

Original entry on oeis.org

0, 2, 6, 18, 50, 120, 252, 476, 828, 1350, 2090, 3102, 4446, 6188, 8400, 11160, 14552, 18666, 23598, 29450, 36330, 44352, 53636, 64308, 76500, 90350, 106002, 123606, 143318, 165300, 189720, 216752, 246576, 279378, 315350, 354690, 397602, 444296
Offset: 0

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(n) = 1*2*3 + 2*3*4 + 3*4*5 +. . .+ (n-2)*(n-1)*n +(n-1)*n*1+ n*1*2, the sum of the cyclic product of terms taken three at a time, final term being n*1*2=2n.

Examples

			a(4) = 1*2*3 + 2*3*4 + 3*4*1 + 4*1*2 = 50.
		

Crossrefs

Cf. A004255.

Programs

  • Mathematica
    Table[n(n+1)(n^2-3n+6)/4,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,2,6,18,50},40] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    a(n) = n*(n+1)*(n^2 -3*n +6)/4 \\ Harry J. Smith, Jul 29 2009
    
  • SageMath
    [n*(n+1)*(n^2-3*n+6)/4 for n in (0..40)] # G. C. Greubel, May 05 2022

Formula

a(n) = 2 * A004255(n).
a(0)=0, a(1)=2, a(2)=6, a(3)=18, a(4)=50, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Apr 22 2015
From G. C. Greubel, May 05 2022: (Start)
a(n) = 6*binomial(n+3, 4) - 12*binomial(n+2, 3) + 8*binomial(n+1, 2).
G.f.: 2*x*(1 - 2*x + 4*x^2)/(1-x)^5.
E.g.f.: (1/4)*x*(8 + 4*x + 4*x^2 + x^3)*exp(x). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001