cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062124 Fourth column of A046741.

Original entry on oeis.org

3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
Offset: 0

Views

Author

Vladeta Jovovic, Jun 04 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).

Crossrefs

Programs

  • GAP
    List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
  • Magma
    [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    Table[(6+19*n+18*n^2+9*n^3)/2, {n,0,40}] (* G. C. Greubel, Jan 31 2019 *)
    LinearRecurrence[{4,-6,4,-1},{3,26,94,234},40] (* Harvey P. Dale, Feb 20 2022 *)
  • PARI
    vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
    

Formula

G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001