A062137 Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).
1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0
Examples
The triangle a(n,m) begins: n\m 0 1 2 3 4 5 ... 0: 1 1: 4 -1 2: 20 -10 1 3: 120 -90 18 -1 4: 840 -840 252 -28 1 5: 6720 -8400 3360 -560 40 -1 ... Formatted by _Wolfdieter Lang_, Jul 07 2014 For more rows see the link. n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
References
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
Links
- Indranil Ghosh, Rows 0..125, flattened
- Wolfdieter Lang, First eleven rows of the triangle.
- Index entries for sequences related to Laguerre polynomials
Crossrefs
Programs
-
Mathematica
Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021
Formula
a(n, m) = ((-1)^m)*n!*binomial(n+3, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^4), m >= 0.
Comments