cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062142 Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).

Original entry on oeis.org

1, 28, 560, 10080, 176400, 3104640, 55883520, 1037836800, 19978358400, 399567168000, 8310997094400, 179819755315200, 4045944494592000, 94612855873536000, 2297740785500160000, 57903067794604032000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Examples

			a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - _Indranil Ghosh_, Feb 23 2017
		

Crossrefs

Programs

  • Magma
    [Factorial(n+3)*Binomial(n+6,6)/6: n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+3)!*Binomial[n+6,6]/3!,{n,0,15}] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    a(n) =(n+3)!*binomial(n+6,6)/3! \\ Indranil Ghosh, Feb 23 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r):
        return f(n)/f(r)/f(n-r)
    def A062142(n):return f(n+3)*C(n+6,6)/f(3) # Indranil Ghosh, Feb 23 2017
    
  • Sage
    [binomial(n,6)*factorial(n-3)/factorial(3) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=1..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n-3) = (-1)^(n-1)*f(n,3,-7), (n>=3). - Milan Janjic, Mar 01 2009