cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062154 Number T(n,m) of n X m matrices over {0,1,2} with all row and column sums equal to 1 or 2, m=0,..,2*n.

Original entry on oeis.org

1, 0, 2, 1, 0, 1, 13, 18, 6, 0, 0, 18, 189, 450, 360, 90, 0, 0, 6, 450, 4842, 16380, 22140, 12600, 2520, 0, 0, 0, 360, 16380, 190080, 832950, 1631700, 1537200, 680400, 113400, 0, 0, 0, 90, 22140, 832950, 10520010, 56609280, 147533400, 200377800
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2001

Keywords

Examples

			Triangle begins:
[0]  1;
[1]  0, 2, 1;
[2]  0, 1, 13, 18, 6;
[3]  0, 0, 18, 189, 450, 360, 90;
[4]  0, 0, 6, 450, 4842, 16380, 22140, 12600, 2520;
[5]  0, 0, 0, 360, 16380, 190080, 832950, 1631700, 1537200, 680400, 113400;
[6]  0, 0, 0, 90, 22140, 832950, 10520010, 56609280, 147533400, 200377800, 144585000, 52390800, 7484400;
T(2, 2)=13, i.e. there are 13 2 X 2 matrices over {0, 1, 2} with all row and column sums equal to 1 or 2: [0 1 / 0 1], [0 1 / 0 2], [0 2 / 1 0], [1 0 / 1 0], [1 1 / 1 1], [1 1 / 2 0], [2 0 / 1 0], [1 1 / 2 0], [1 0 / 2 0], [0 1 / 0 2], [1 1 / 0 1], [1 0 / 1 1], [0 1 / 0 2].
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 3.4.15).

Crossrefs

Row sums are A062155.
Main diagonal is A062156.
Final terms of each row are A000680.

Programs

  • PARI
    Row(n)={Vecrev(serlaplace(n!*polcoef((1/sqrt(1-x*y + O(x*x^n))*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2) + O(x*x^n))), n)))}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Feb 03 2021

Formula

Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1/sqrt(1-x*y)*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2)).
Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1+(1/2*y^2+2*y)*x+(1/8*y^4+3/2*y^3+13/4*y^2+1/2*y)*x^2+(1/48*y^6+1/2*y^5+25/8*y^4+21/4*y^3+3/2*y^2)*x^3+...