cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062162 Boustrophedon transform of (-1)^n.

Original entry on oeis.org

1, 0, 0, 1, 0, 5, 10, 61, 280, 1665, 10470, 73621, 561660, 4650425, 41441530, 395757181, 4031082640, 43626778785, 499925138190, 6046986040741, 76992601769220, 1029315335116745, 14416214547400450, 211085887742964301, 3225154787165157400, 51329932704636904305
Offset: 0

Views

Author

Frank Ellermann, Jun 10 2001

Keywords

Comments

Inverse binomial transform of Euler numbers A000111. - Paul Barry, Jan 21 2005
a(n) = abs(sum of row n in A247453). - Reinhard Zumkeller, Sep 17 2014

Crossrefs

Cf. A000111 (binomial transform).
Cf. A000667.
Cf. A247453.

Programs

  • Haskell
    a062162 = abs . sum . a247453_row -- Reinhard Zumkeller, Sep 17 2014
    
  • Mathematica
    CoefficientList[Series[E^(-x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
    t[n_, 0] := (-1)^n; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import islice, accumulate
    def A062162_gen(): # generator of terms
        blist, m = tuple(), -1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=(m:=-m))))[-1]
    A062162_list = list(islice(A062162_gen(),20)) # Chai Wah Wu, Jun 10 2022
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A062162_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = (-1)^i
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            R.append(A[e*i//2])
        return R
    A062162_list(22) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: exp(-x)*(tan(x) + sec(x)). - Vladeta Jovovic, Feb 11 2003
a(n) ~ 4*(2*n/Pi)^(n+1/2)/exp(n+Pi/2). - Vaclav Kotesovec, Oct 05 2013
G.f.: E(0)*x/(1+x) + 1/(1+x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*k-1)*(x*(k+1)-1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014